• 제목/요약/키워드: GAIT CYCLE

검색결과 150건 처리시간 0.023초

다기능성 인솔 착용 시 하지의 근활성도 분석 (The Analysis of Muscle Activities on the Lower Limb during Wearing Functional Insole)

  • 박재영
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.327-336
    • /
    • 2010
  • The purpose of this study was to analyze muscle activities on functional insole with diet effect. Originally, ten healthy female subjects with an average age of 23.2 year(S.D=1.1), weight of 49.7 kg(S.D=4.9), height of 163.2 cm(S.D=3.5) and a shoe size of 237.5 cm(S.D=4.9) were participated in this experiment. Ten healthy females walked on a treadmill(speed=about 4.2 km/h) wearing two different insole types. Muscle activities data was collected using the EMG operating system. The surface EMG signal for tibialis anterior(TA), gastrocnemius(GA), vatus lateralis(VL) and biceps femoris(BF) were acquired at the RMS(10 Hz, 350 Hz) using Noraxon Telemyo DTS system(Noraxon inc, USA). This study processed the data using the Windows SPSS ver.17.0 to get an independent t-test, with the setting, p<.05. Analysis of muscle activity were measured and calculated during walking. The results are as follow: Functional insole wearing were increased muscle activities significantly from Tibialis anterior(TA) during total gait cycle. Normal distribution was demonstrated in total step of stances period. One foot standing position showed decreased muscle activity. Two foot standing position was demonstrated with gastrocnemius and biceps femoris. As a result of the analysis, Functional insole will inerease the diet effect in the use of four muscle groups.

낙상 재현을 위한 보행자 생체 정보 기반의 낙상 유도 시스템 개발 (Development of Fall Inducement System based on Pedestrian Biological Data for Fall Reproduction)

  • 이종일;한종부;구재완;이석재;손동섭;서갑호
    • 로봇학회논문지
    • /
    • 제15권3호
    • /
    • pp.286-292
    • /
    • 2020
  • This paper is about a fall inducement system for guiding like a real fall. Reliable fall data can be used as an essential element in developing effective fall protection devices. We can get this data if the induced fall is very realistic. The proposed system analyzes gait characteristics and determines when to fall based on the pedestrian's biometric data. To estimate the fall inducement time, an active estimation algorithm was proposed using different biometric values for each pedestrian. The proposed algorithm is designed to response actively to the ratio of gait cycle and a stance period. To verify this system, an experimental environment was implemented using a multi-rail treadmill equipped with a ground reaction force measurement device. An experiment was conducted to induce falls to pedestrians using a fall inducement system. By comparing the experimental scene to the video of the actual fall, it has been confirmed that the proposed system can induce a reliable fall.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Repeatability of a Multi-segment Foot Model with a 15-Marker Set in Normal Children

  • Kim, Eo Jin;Shin, Hyuk Soo;Lee, Jae Hee;Kyung, Min Gyu;Yoo, Hyo Jeong;Yoo, Won Joon;Lee, Dong Yeon
    • Clinics in Orthopedic Surgery
    • /
    • 제10권4호
    • /
    • pp.484-490
    • /
    • 2018
  • Background: The use of three-dimensional multi-segment foot models (3D MFMs) is increasing since they have superior ability to illustrate the effect of foot and ankle pathologies on intersegmental motion of the foot compared to single-segment foot model gait analysis. However, validation of the repeatability of the 3D MFMs is important for their clinical use. Although many MFMs have been validated in normal adults, research on MFM repeatability in children is lacking. The purpose of this study is to validate the intrasession, intersession, and interrater repeatability of an MFM with a 15-marker set (DuPont foot model) in healthy children. Methods: The study included 20 feet of 20 healthy children (10 boys and 10 girls). We divided the participants into two groups of 10 each. One group was tested by the same operator in each test (intersession analysis), while the other group was tested by a different operator in each test (interrater analysis). The multiple correlation coefficient (CMC) and intraclass correlation coefficient (ICC) were calculated to assess repeatability. The difference between the two sessions of each group was assessed at each time point of gait cycle. Results: The intrasession CMC and ICC values of all parameters showed excellent or very good repeatability. The intersession CMC of many parameters showed good or better repeatability. Interrater CMC and ICC values were generally lower for all parameters than intrasession and intersession. The mean gaps of all parameters were generally similar to those of the previous study. Conclusions: We demonstrated that 3D MFM using a 15-marker set had high intrasession, intersession, and interrater repeatability in the assessment of foot motion in healthy children but recommend some caution in interpreting the hindfoot parameters.

근전도와 저항 센서를 이용한 보행 단계 감지 (Gait Phases Detection from EMG and FSR Signals in Walkingamong Children)

  • 장은혜;지수영;이재연;조영조;전병태
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.207-214
    • /
    • 2010
  • 본 연구에서는 근전도 신호를 활용하여 정상인의 보행과 관련된 상지와 하지 근육의 신호를 확인하고 저항센서를 이용하여 정상적인 보행 패턴을 확인하였다. 대학생 15명을 대상으로 정지해 있을 때와 평지를 보행할 때, 상지의 4부위(대흉근과 승모근)와 하지의 10부위(대퇴직근, 대퇴이두근, 내측광근, 외측광근, 반막양근, 반건양근, 가자미근, 장비골근, 내비복근과 외비복근)에 전극을 부착하여 근전도를 측정하였다. 저항센서는 양측 발바닥의 8부위에 센서를 부착하여 보행시 발에 가해지는 압력을 측정하였다. 그 결과, 근전도 신호는 정지상태에 비하여 보행 시에 허벅지의 외측광근과 반건양근을 제외하고 모든 근육에서 유의하게 높은 진폭을 가졌다. 또한 보행주기의 두 단계인 입각기와 유각기와 관련된 근육을 확인하였다. 저항 센서의 신호 분석 결과, 평균 보폭 주기 동안 크게 입각기와 유각기의 두 주기와 세부적으로 여덟 단계 - 초기 접지기, 하중 반응기, 중간 입각기, 말기 입각기, 전 유각기, 초기 유각기, 중간 유각기, 말기 유각기 - 의 보행 주기를 확인할 수 있었다.

  • PDF

임신기간 중 계단의 단너비에 따른 임산부 양발 보행의 생체역학적 변화 (Biomechanical Alterations in Gait of Stair Decent with Different Treads during Pregnancy)

  • 하종규
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.205-215
    • /
    • 2009
  • 계단 하강보행에서의 임산부 낙상은 임산부와 태아에게 치명적인 영향을 미친다. 이 연구는 임신기간 중 계단의 단 너비 변화에 따른 임산부 양발 보행의 생체역학적 변화를 구명하는 것이다. 이 실험을 위하여 건강한 임산부 9명이 참가하였고 Qualisys사의 Proreflex MCU-240 카메라 7대와 Kistler사의 Type 9286AA 지면반력기 2대를 설치하여 상호 동조하여 실험하였으며 연구변인은 Visual 3D(C-motion Inc., USA)를 사용하여 인체를 모델링 한 후 산출하였다. 임신기간이 경과됨에 분당 활보장수는 감소한 반면 활보장 주기는 증가하였으며 양발의 슬관절 모멘트 차이가 작아졌다. 그리고 단너비가 넓어질수록 속력과 활보장 길이가 증가하였다. 단너비에 따른 하지 관절모멘트는 각 관절마다 고유한 패턴을 보였으며 고관절 모멘트는 주로 양발의 비대칭성 패턴을 보였고 슬관절 및 족관절은 대칭적인 패턴을 보였다. 그리고 임신기간이 경과됨에 따라 좌 우측의 최대 최소 슬관절 모멘트의 차이가 작아졌다. 이러한 결과들은 임산부가 신체변화에 적응하면서 안전성의 최대화를 위하여 자신의 고유한 보행패턴을 생성하는 자기적응화 과정을 지속적으로 유지하면서 변화한다고 할 수 있다.

맥스 스크립트를 이용한 감성적 걸음걸이 예측 시스템 (The Prediction System of Emotional Reaction to Gaits Using MAX SCRIPT)

  • 정재욱
    • 감성과학
    • /
    • 제14권1호
    • /
    • pp.1-6
    • /
    • 2011
  • 인간의 걸음걸이를 보고 느끼는 감성적 반응에는 모든 사람들이 공감할 수 있는 '규칙성'이 있다. 본 논문은 이러한 규칙성을 수량적으로 추출하고 재구성하여 3D 캐릭터 행동제어에 적용하고자 하는 연구과정의 일부분이다. <"가"라는 감성반응을 가지고 있는 걸음걸이 "A"와 "나" 라는 감성반응을 가진 걸음걸이 "B" 의 신체적 수치 데이터를 임의의 비율로 섞었을 때, 그에 대한 감성반응 역시 "가"와 "나" 가 섞인 "가/나"가 된다.>란 가설을 증명해서 향후 연구의 타당성을 확보하는 것이 이번 논문의 목적이다. 3D Studio Max의 스크립트로 만든 EAM을 이용하여, 바이페드 형식의 2개의 걸음걸이 샘플을 브랜딩 하였다. 6번 중 4번의 실험에서 성공적인 브랜딩 결과물을 추출할 수 있었다. 이것은 모션캡처 등을 이용하지 않더라도 기본적인 바이페드 데이터만 있다면 다양한 걸음걸이의 바이페드를 생산할 수 있다는 것을 의미한다. 현재 팔, 다리의 1Cycle 운동조건이 갖추어진 바이페드 샘플을 대상으로 하고 있지만, 완성된 시스템을 위해서는 다양한 운동조건에서도 브랜딩이 가능한 툴이 필요하다.

  • PDF

보행과 한발·두발 수직점프 수행 시 내측비복근 근-건 복합체와 근섬유다발의 길이 변화 패턴의 차이 (Differences in the Length Change Pattern of the Medial Gastrocnemius Muscle-Tendon Complex and Fascicle during Gait and One-legged and Two-legged Vertical Jumping)

  • 이해동;한보람;김진선;오정훈;조한엽;윤소야
    • 한국운동역학회지
    • /
    • 제25권2호
    • /
    • pp.175-182
    • /
    • 2015
  • Objective : The purpose of this study was to investigate difference in fascicle behavior of the medial gastrocnemius during the locomotion with varying intensities, such as gait and one-legged and two-legged vertical jumping. Methods : Six subjects (3 males and 3 females; age: $27.2{\pm}1.6yrs.$, body mass: $62.8{\pm}9.8kg$, height: $169.6{\pm}8.5cm$) performed normal gait (G) at preferred speed and maximum vertical jumping with one (OJ) and two (TJ) legs. While subjects were performing the given tasks, the hip, knee and ankle joint motion and ground reaction force was monitored using a 8-infrared camera motion analysis system with two forceplates. Simultaneously, electromyography of the triceps surae muscles, and the fascicle length of the medial gastrocnemius were recorded using a real-time ultrasound imaging machine. Results : Comparing to gait, the kinematic and kinetic parameters of TJ and OJ were found to be significantly different. Along with those parameters, change in the medial gastrocnemius (MG) muscle-tendon complex (MTC) length ($50.57{\pm}6.20mm$ for TJ and $44.14{\pm}5.39mm$ for OJ) and changes in the fascicle length of the MG ($18.97{\pm}3.58mm$ for TJ and $20.31{\pm}4.59mm$ for OJ) were observed. Although the total excursion of the MTC and the MG fascicle length during the two types of jump were not significantly different, however the pattern of length changes were found to be different. For TJ, the fascicle length maintained isometric longer during the propulsive phase than OJ. Conclusion : One-legged and two-legged vertical jumping use different muscle-tendon interaction strategies.

Comparison of Lower Limb Muscle Activities by Various Angles of a Medio-lateral Ramp During Gait

  • Lee, Sang-Yeol;Ahn, Soo-Hong
    • 대한물리의학회지
    • /
    • 제12권3호
    • /
    • pp.93-98
    • /
    • 2017
  • PURPOSE: This study investigated the activities of lower limb muscles according to the angle of a medio-lateral ramp while walking to promote awareness of the risks associated with a medio-lateral ramp. METHODS: This study was conducted on 20 healthy male adults. The muscle activities of the vastus medialis oblique (VMO), vastus lateralis oblique (VLO), tibialis anterior (TA) and peroneus longus (PL) were measured while the subjects were walking on a 3 m medio-lateral ramp. Five angles (flat, $2^{\circ}$, $5^{\circ}$, $10^{\circ}$, and $15^{\circ}$) were selected for the angle conditions of the experiment on a medio-lateral ramp. The activities were measured during the stance phase only in the middle cycle of a three-cycle walking experiment. The mean value obtained from the three walking tests was used for the analysis. RESULTS: Results showed that walking on a mediolateral ramp required more muscle activities than walking on a flat surface, through which balanced walking was achieved. CONCLUSION: Walking on a medio-lateral ramp requires proper muscle activation and control, without which the risks of injury to the joints of the lower limbs and falls are likely to increase. Therefore, special attention should be given to older people and the disabled under the condition of traversing a ramp.

기능적 전기 자극에 대한 고찰 (A Study on the Functional Electrical Stimulation)

  • 임종수;김순희;송영화
    • 대한물리치료과학회지
    • /
    • 제6권4호
    • /
    • pp.187-199
    • /
    • 1999
  • Functional Electrical Stimulation (FES) is used for muscle reeducation, reduction of spasticity, delay of atrophy, and muscle strengthening. FES stronger stimulation than other forms of electrical stimulation. The efficacy of FES in improving function has been substantiated in the literature. Treatment programs employing FES - activation of muscular tissue through the intact peripheral nervous system - can be broken into five major categories, according to the goal of treatment. These broad areas would include the use of FES to: (1) a direct excitation onto the alpha motoneuron, through peripheral stimulation of the Ia myotatic sensory system and ascending afferent information, which will be integrated at conscious and subconscious level of the CNS. (2) The quality of a stimulated muscle contraction is determined by combination of many parameters, including stimulus amplitude, pulse duration, stimulus frequency, and duty cycle. (3) A unit that has a pulse duration between 200 and $400{\mu}sec$ will be more than adequate for FES applications. (4) The neuromuscular plasticity is critically important to return of function using muscle re-education and facilitation applications. (5) Prior to using FES as an electrical orthosis, the patient should build up endurance in the muscles to be stimu1ated during the gait cycle.

  • PDF