Gait Phases Detection from EMG and FSR Signals in Walkingamong Children

근전도와 저항 센서를 이용한 보행 단계 감지

  • Jang, Eun-Hye (Robot/Cognition System Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chi, Su-Young (Robot/Cognition System Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Jae-Yeon (Robot/Cognition System Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Cho, Young-Jo (Robot/Cognition System Research Department, IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chun, Byung-Tae (Department of Web Information Engineering, Hankyong National University)
  • 장은혜 (한국전자통신연구원 융합기술연구부문 로봇/인지시스템연구부) ;
  • 지수영 (한국전자통신연구원 융합기술연구부문 로봇/인지시스템연구부) ;
  • 이재연 (한국전자통신연구원 융합기술연구부문 로봇/인지시스템연구부) ;
  • 조영조 (한국전자통신연구원 융합기술연구부문 로봇/인지시스템연구부) ;
  • 전병태 (한경대학교 웹정보공학과)
  • Received : 2010.02.12
  • Accepted : 2010.03.17
  • Published : 2010.03.31

Abstract

The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

본 연구에서는 근전도 신호를 활용하여 정상인의 보행과 관련된 상지와 하지 근육의 신호를 확인하고 저항센서를 이용하여 정상적인 보행 패턴을 확인하였다. 대학생 15명을 대상으로 정지해 있을 때와 평지를 보행할 때, 상지의 4부위(대흉근과 승모근)와 하지의 10부위(대퇴직근, 대퇴이두근, 내측광근, 외측광근, 반막양근, 반건양근, 가자미근, 장비골근, 내비복근과 외비복근)에 전극을 부착하여 근전도를 측정하였다. 저항센서는 양측 발바닥의 8부위에 센서를 부착하여 보행시 발에 가해지는 압력을 측정하였다. 그 결과, 근전도 신호는 정지상태에 비하여 보행 시에 허벅지의 외측광근과 반건양근을 제외하고 모든 근육에서 유의하게 높은 진폭을 가졌다. 또한 보행주기의 두 단계인 입각기와 유각기와 관련된 근육을 확인하였다. 저항 센서의 신호 분석 결과, 평균 보폭 주기 동안 크게 입각기와 유각기의 두 주기와 세부적으로 여덟 단계 - 초기 접지기, 하중 반응기, 중간 입각기, 말기 입각기, 전 유각기, 초기 유각기, 중간 유각기, 말기 유각기 - 의 보행 주기를 확인할 수 있었다.

Keywords

References

  1. 강성재, 안승찬, 김영호 (2002). 자이로센서와 저항 센서를 이용한 보행분석, 대한인간공학회 2002년 창립 20주년 기념 학술대회 논문집, 111-113.
  2. 김사엽, 김영호 (2002). 보행시작 과정의 생체역학적 특성, 한국정밀공학회 2002년도 춘계학술대회논문 요약집, 289.
  3. 민병찬, 김전환, 전광진, 이동형, 김진수 (2006). 근전도에 의한 계단 상하행시 근피로 비교, 한국산업경영시스템학회 2006년 춘계학술대회, 73-76.
  4. 안승찬, 황성재, 강성재, 김영호 (2004). 저항 센서와 자이로센서를 이용한 새로운 보행 주기 검출시스템의 개발 및 평가, 한국정밀공학회지, 21(10), 196-203.
  5. Ament, W., Bongfa, G., Hof, A. L., & Verkerke, G. J. (1993). EMG median power frequency in an exhausting exercise, Journal of Electromyogram Kinesiology, 3, 214-220. https://doi.org/10.1016/1050-6411(93)90010-T
  6. Astrand and Kaare Rodahl. (1970). Textbiik of work physiology, Mcc Traw Hill, Inc. pp. 90.
  7. Basmajian, J. V. & Deluca, C. J., (1985). Description and analysis of the EMG signal; Muscle Alive(5th Ed.), William & Wilkins (Philidelphia).
  8. Dai, R., Stei, R. B., Andrews, B. J., James, K. B., & Wieler, M. (1996). Application of tilt sensors in functional electrical stimulation, IEEE Transactions on Rehabilitation Engineering, 4, 63-72. https://doi.org/10.1109/86.506403
  9. Hejmadi, A., Davidson, R. J., & Rozin, P. (2000). Exploring Hindu Indian emotion expressions: Evidence for accurate recognition by Americans and Indians. Psychological Science, 11, 183-187. https://doi.org/10.1111/1467-9280.00239
  10. Hodgins, D. (2008). The importance of measuring human gait. Medical Device Technology.
  11. Hof, A. L., Elzinga, H., Grimmius, W., & Halbertsma, J. P. K. (2005). Detection of non-standard EMG profiles in walking, Gait Posture, 21, 171-177. https://doi.org/10.1016/j.gaitpost.2004.01.015
  12. Jansen, B. H., Miller, V. H., Mavrofrides, D. C., & Stegink Jansen, C. W. (2003). Multidimensional EMG-based assessment of walking dynamics, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(3), 294-300. https://doi.org/10.1109/TNSRE.2003.816865
  13. Janssen, D., Scholhorn, W., Lubienetzki, J., Folling, K., Kokenqe, H., & Davids, K. (2008). Recognition of emotions in gait patterns by means of artificial neural nets. Journal of Nonverbal Behavior, 32(2), 79-82. https://doi.org/10.1007/s10919-007-0045-3
  14. Konrad, P. (2005). The ABC of EMG: A practical introduction to kinesiological electromyography. Noraxon Inc. USA. pp 19-20.
  15. Kostov, A., Andrew, B. J., Popovic, D. B., Stein, R. B., & Armstron, W. (1995). Machine learning in control of functional electrical stimulation systems for locomotion, IEEE Transactions on Biomedical Engineering, 42, 541-551. https://doi.org/10.1109/10.387193
  16. Montepare, J. M., Goldstein, S. B., & Clausen, A. (1987). The identification of emotions from gait information. Journal of Nonverbal Behavior, 11, 33-42. https://doi.org/10.1007/BF00999605
  17. Ng, S. K. & Chizeck, H. J. (1977). Fuzzy model identification for classification of gait events in paraplegics, IEEE Transactions on Fuzzy Systems, 5, 536-544.
  18. Pappas, I. P. I., Popovic, M. R., Keller, T., Dietz, V., & Morari, M. (2001). A reliable gait phase detection system, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 9(2), 113-125. https://doi.org/10.1109/7333.928571
  19. Rose, J. & Gamble, J. G. (1994). Human walking, Williams & Wilkins 2nd Ed.(Philidelphia), 25-28.
  20. The pathokinesiology service & the physical therapy department. (2001). Observational gait analysis. Rancho Los Amigos National Rehabilitation center, Downey, CA, USA.
  21. Tong, K. & Grant, H. M. (1999). A practical gait analysis system using gyroscopes, Medical Engineering & Physics, 21, 87-94. https://doi.org/10.1016/S1350-4533(99)00030-2
  22. Vollestad, N. K. (1997). Measure of human muscle fatigue, Journal of Neuroscience Methods, 74, 219-227. https://doi.org/10.1016/S0165-0270(97)02251-6
  23. Williamson, A., Bloemhof, F., & Boom, H. (1990). Automatic stance-wing phase detection from accelerometer data for peroneal nerve stimulation. IEEE Transactions on Biomedical Engineering, 37, 1201-1208. https://doi.org/10.1109/10.64463