• Title/Summary/Keyword: GAC (granular activated carbon)

Search Result 152, Processing Time 0.027 seconds

Degradation of a Pesticide, 4-Chloro-2-methylphenoxyacetic Acid by Immobilized Biofilm in Bench-scale Column Reactors (컬럼반응조내에서의 고정된 생물막에 의한 농약 4-chloro-2-methylphenoxyacetic acid의 분해)

  • 오계헌;차민석
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.524-528
    • /
    • 1996
  • Bacterial degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) was studied in column reactors under conditions approximating a fluidized bed system, with granular activated carbon (GAC) as a support matrix. A mixed bacterial culture of MCPA-degrading bacteria was used as an inoculum to develop a biofilm on GAC. Initially, adsorption of MCPA by GAC and blofilm formation on GAC were examined. MCPA degradation was evaluated with a batch and continuous mode of operation of the GAC fixed-film column reactors. In the batch operations, complete degradation of MCPA was achieved during the incubation period. Partial degradation of MCPA occurred in the continuous operations and MCPA degradation was dependent on the feeding rate of MCPA solution.

  • PDF

Filtration Efficiency of Granular Activated Carbons to Polydisperse Ultrafine Particles through the Surface Adsoprtion (그래뉼 타입 활성탄 필터의 100 나노 미만 다분산 초미세먼지 표면흡착 제거 효율 연구)

  • Cho, Kyungil;Kang, Giwon;Shin, Jiyoon;Kim, Changhyuk
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.79-86
    • /
    • 2022
  • Many commercial air purifiers currently have deployed granular activated carbon (GAC) filters for removing volatile organic compounds in the indoor air. GACs are generally used to remove gaseous contaminants in the air through adsorption by the inner surfaces of pores. In addition, airborne particles can be also filtered by the surface adsorption of the GACs, which can improve the life-time of the particulate filters. In this study, the filtration efficiency of GACs to ultrafine particles through surface adsorption was investigated at different volume flow rates by deploying a continuous particle filtration system. The polydisperse sodium chloride (NaCl) particles were generated by a set of an atomizer and a diffusion dryer, and then mixed with particle-free air at different volume flow rates. The penetration of ultrafine particles and pressure drop for each experimental condition were measured to figure out the effect of the volume flow rate on the surface adsoprtion of the GACs to particles, ~ 2 mm. The particle filtration efficiency of the GACs decreased as the volume flow rate increased from 4 to 14 lpm. However, the 5 times thicker GAC filter layer decreased the penetration of ultraparticles than a preious study. The filtration efficiency of the single granule was also higher than the previous result in the literature with smaller granule filter materials.

Evaluation of perfluorinated compounds removal performance and automatic regeneration performance by activated carbon adsorption process (활성탄 흡착공정에 의한 과불화화합물의 제거 및 활성탄 자동재생 성능 평가)

  • Jung, Jinho;Lee, Sanghoon;Yun, Wonsang;Choi, Daehee;Jung, Jinyoung;Han, Ihnsup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • In this study, the removal efficiency of PFCs(perfluorinated compounds) in the GAC(granule activated carbon) process based on the superheated steam automatic regeneration system was investigated in laboratory scale and pilot-scale reactor. Among PFCs, PFHxS(perfluorohexyl sulfonate) was most effectively removed. The removal efficiency of PFCs was found to be closely related to the EBCT, and the removal efficiencies of PFOA(perfluorooctanoic acid), PFOS(perfluorooctyl sulfonate), and PFHxS were 43.7, 75, and 100%, respectively, under the condition of EBCT of 6 min. Afterward, PFOA, PFOS, and PFHxS exhibited the earlier breakthrough time in the order. After that, GAC was regenerated, and the removal efficiency of the PFCs before and after regeneration was compared. As a result, it was shown that the PFCs removal efficiency in the regenerated GAC process were higher, and that of PFOA was improved to 75%. The findings of this study indicate the feasibility of the superheated steam automatic regeneration system for the stable removal of the PFCs, and it was verified that this technology can be applied stably enough even in field conditions.

Performance of GACC and GACP to treat institutional wastewater: A sustainable technique

  • Khaleel, Mohammed R.;Ahsan, Amimul;Imteaz, M.;El-Sergany, M.M.;Nik Daud, N.N.;Mohamed, T.A.;Ibrahim, Buthainah A.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.339-349
    • /
    • 2015
  • Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques.

Adsorption Characteristics of Sulfonamide Antibiotic Compounds in GAC Process (GAC 공정에서의 Sulfonamide계 항생물질 흡착특성)

  • Son, Hee-Jong;Jung, Jong-Moon;Roh, Jae-Soon;Yu, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.401-408
    • /
    • 2008
  • Adsorption performance of sulfonamide antibiotic compounds such as sulfadimethoxine(SDM), sulfachloropyridazine(SCP), sulfamethazine(SMT), sulfathiazole(STZ) and sulfamethoxazole(SMX) on granular activated carbon(GAC) was evaluated in this study. The coal-based activated carbon was found to be more effective than other carbons in adsorption of sulfonamide antibiotic compounds. The wood-based activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacities(X/M) of coal-based activated carbon for the five sulfonamide species was 1.3$\sim$1.5 and 1.8$\sim$2.1 times larger than coconut- and wood-based activated carbon, respectively. Carbon usage rates (CUR) of coal-, coconut- and wood-based activated carbons for SCP were 3.55 g/day, 4.29 g/day and 6.47 g/day, respectively. Similar results were obtained in the adsorption of the rest four sulfonamide species. It is concluded that coal-based activated carbon could removed the sulfonamide antibiotic compounds better than other material-based activated carbons.

Study on Removal of Artificial Radionuclide (I-131) in Water (물속의 인공방사성핵종(I-131) 제거율 연구)

  • Jeong, Gwanjo;Lee, Kyungwoo;Kim, Bogsoon;Lee, Suwon;Lee, Jonggyu;Koo, Ami
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.747-752
    • /
    • 2014
  • Iodine-131, an artificial radionuclide, mostly exists as iodide ion ($^{131}I^-$) and iodate ion ($^{131}IO_3{^-}$) in the water, and When a short time contacted, it could not be removed by poly aluminum chloride (PACl) and powdered activated carbon (PAC). Although the removal rate of iodine-131 was not related with turbidity of raw water, it showed linear relationship with contact time with PAC. With the mixture of PACl (24 mg/L or more) and PAC (40 mg/L or more), about 40% of iodine-131 could be removed. Iodine-131 could be removed little by sand filtration, but approximately 100% by granular activated carbon (GAC), both virgin-GAC and spent-GAC. Microfiltration process could remove little iodine-131 while reverse osmosis process could remove about 92% of iodine-131.

Removal of Basic Dye from Aqueous Solution using Coal-based Granular Activated Carbon (석탄계 입상활성탄을 이용한 수용액으로부터 염기성 염료의 제거)

  • Choi, Han Ah;Park, Ha Neul;Moon, Hye Woon;Kim, Eun Bin;Jang, Yeon Woo;Won, Sung Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • This research studied the adsorption of basic dye, Basic Blue 3 (BB3) by using coal-based granular activated carbon (C-GAC) from aqueous solution. All experiments were performed in batch processes, and adsorption parameters such as C-GAC dosage, contact time, initial dye concentration and temperature were evaluated. The removal efficiency of BB3 was increased with increasing the C-GAC dosage and 100% of initial concentration, $50mg\;L^{-1}$ was removed above 0.2 g of C-GAC. Also, the time to reach equilibrium depended on the initial dye concentration. According to the Langmuir model, the maximum uptakes of C-GAC were calculated to be 66.45, 84.97 and $87.19mg\;g^{-1}$ at 25, 35 and $45^{\circ}C$, respectively. In addition, thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were investigated.

Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment

  • Alighardashi, Abolghasem;Pakan, Mahyar;Jamshidi, Shervin;Shariati, Farshid Pajoum
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.517-528
    • /
    • 2017
  • This study evaluates the performance of membrane bioreactor (MBR) coupled with a modified walnut shell granular activated carbon (WSGAC) for tannery wastewater treatment. For this purpose, a pilot with overall volume of 80L and 12 hours hydraulic retention time (HRT) is operated in three scenarios. Here, the chemical oxidation demand (COD) of wastewater is reduced more than 98% in both C:N ratios of 13 (S1) and 6.5 (S2). This performance also remains intact when alkalinity depletes and pH reduces below 6 (S3). The ammonium removal ranges between 99% (S2) and 70% (S3). The reliability of system in different operating conditions is due to high solids retention time and larger flocs formation in MBR. The average breakthrough periods of WSGAC are determined between 15 minutes (S2) and 25 minutes (S1). In this period, the overall nitrate removal of MBR-WSGAC exceeds 95%. It is also realized that adding no chemicals for alkalinity stabilization and consequently pH reduction of MBR effluent (S3) can slightly lengthen the breakthrough from 15 to 20 minutes. Consequently, MBR can successfully remove the organic content of tannery wastewater even in adverse operational conditions and provide proper influent for WSGAC.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

Evaluation of Advanced Oxidation Processes by Catalytic Ozonation with Mn-doped GAC (망간담지촉매를 이용한 오존/촉매 고급산화공정 평가)

  • Song, Seung-Ju;Oh, Byung-Soo;Na, Seung-Jin;Lee, Eung-Taek;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.176-182
    • /
    • 2004
  • The purpose of this study was to investigate the heterogeneous catalytic ozonation of oxalic acid by manganese (Mn) doped-granular activated carbon (GAC). In order to observe the effect of the amount of Mn doped on GAC, catalysts were manufactured by varying the impregnated Mn concentration. In this paper, the following had labeled all sorts kinds of Mn-doped GAC were labeled with suitable names according to the amount (mM) of the concentration of dipping solution: They were each named as 'Mn20', 'Mn50', 'Mn100' and 'Mn200'. These experiments were performed in a batch reactor (0.5 L) and a semi-batch reactor (1 L) and Mn-free GAC was used as a blank catalyst. The ozone decay properties of each manufactured catalyst were firstly investigated to find out the reactivity between the aqueous ozone and the catalysts. Oxalic acid removal by catalytic ozonation was then performed to demonstrate the oxidative efficiencies of each catalyst.