• Title/Summary/Keyword: GABA Antagonists

Search Result 11, Processing Time 0.032 seconds

Involvement of the spinal γ-aminobutyric acid receptor in the analgesic effects of intrathecally injected hypertonic saline in spinal nerve-ligated rats

  • Myong-Hwan Karm;Hyun-Jung Kwon;Euiyong Shin;Honggyoon Bae;Young Ki Kim;Seong-Soo Choi
    • The Korean Journal of Pain
    • /
    • v.36 no.4
    • /
    • pp.441-449
    • /
    • 2023
  • Background: Hypertonic saline is used for treating chronic pain; however, clinical studies that aid in optimizing therapeutic protocols are lacking. We aimed to determine the concentration of intrathecally injected hypertonic saline at which the effect reaches its peak as well as the underlying γ-aminobutyric acid (GABA) receptor-related antinociceptive mechanism. Methods: Spinal nerve ligation (SNL; left L5 and L6) was performed to induce neuropathic pain in rats weighing 250-300 g. Experiment 1: one week after implanting the intrathecal catheter, 60 rats were assigned randomly to intrathecal injection with 0.45%, 0.9%, 2.5%, 5%, 10%, and 20% NaCl, followed by behavioral testing at baseline and after 30 minutes, 2 hours, 1 day, and 1 week to determine the minimal concentration which produced maximal analgesia. Experiment 2: after determining the optimal intrathecal hypertonic saline concentration, 60 rats were randomly divided into four groups: Sham, hypertonic saline without pretreatment, and hypertonic saline after pretreatment with one of two GABA receptor antagonists (GABAA [bicuculline], or GABAB [phaclofen]). Behavioral tests were performed at weeks 1 and 3 following each treatment. Results: Hypertonic saline at concentrations greater than 5% alleviated SNL-induced mechanical allodynia and had a significant therapeutic effect, while showing a partial time- and dose-dependent antinociceptive effect on thermal and cold hyperalgesia. However, pretreatment with GABA receptor antagonists inhibited the antinociceptive effect of 5% NaCl. Conclusions: This study indicates that the optimal concentration of hypertonic saline for controlling mechanical allodynia in neuropathic pain is 5%, and that its analgesic effect is related to GABAA and GABAB receptors.

Effect of GABA Antagonist in the Monocular Optokinetic Nystagmus of the Chicken (닭의 Monocular Optokinetic Nystagmus에서 GABA Antagonist 효과)

  • 김명순
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.247-254
    • /
    • 1990
  • Chicken monocular head and eye optokinetic nystagmus (OKN) were observed by coil recordings after intravitreal administration of GABA antagonists (picrotoxin and bicuculline) into the opened and closed eye. Before injection of drugs the chicken displayed an OKN for T-N stimulation being more efficient in evoking this visuomotor reflex than for N-T stimulation. The injection of GABA antagonist into the opened eye provoked a decrease or disappearance of the head and eye OKN. On the other hand, the injection of GABA antagonist into the closed eye, the head and eye OKN augmented. Thus, GABA antagonist abolished the directional asymmetry of the head and eye OKN, indicating the involvement of GABAergic mechanisms in the inhibition of the N-T component of the monocular OKN.

  • PDF

Regional difference in spontaneous firing inhibition by GABAA and GABAB receptors in nigral dopamine neurons

  • Kim, Yumi;Jang, Jinyoung;Kim, Hyun Jin;Park, Myoung Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.721-729
    • /
    • 2018
  • GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both $GABA_A$ and $GABA_B$ receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either $GABA_A$ receptors or $GABA_B$ receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either $GABA_A$ or $GABA_B$ receptor equally suppressed spontaneous firing in the soma, whereas $GABA_B$ receptor inhibited spontaneous firing more strongly than $GABA_A$ receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.

Bicuculline Methiodide (BMI) Induces Membrane Depolarization of The Trigeminal Subnucleus Caudalis Substantia Gelatinosa Neuron in Mice Via Non-$GABA_A$ Receptor-Mediated Action

  • Yin, Hua;Park, Seon-Ah;Choi, Soon-Jeong;Bhattarai, Janardhan P.;Park, Soo-Joung;Suh, Bong-Jik;Han, Seong-Kyu
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.217-221
    • /
    • 2008
  • Bicuculline is one of the most commonly used $GABA_A$ receptor antagonists in electrophysiological research. Because of its poor water solubility, bicuculline quaternary ammonium salts such as bicuculline methiodide (BMI) and bicuculline methbromide are preferred. However, a number of studies have shown that BMI has non-$GABA_A$ receptor-mediated effects. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is implicated in the processing of nociceptive signaling. In this study, we investigated whether BMI has non-GABA receptor-mediated activity in Vc SG neurons using a whole cell patch clamp technique. SG neurons were depolarized by application of BMI ($20{\mu}M$) using a high $Cl^-$ pipette solution. GABA ($30-100{\mu}M$) also induced membrane depolarization of SG neuron. Although BMI is known to be a $GABA_A$ receptor antagonist, GABA-induced membrane depolarization was enhanced by co-application with BMI. However, free base bicuculline (fBIC) and picrotoxin (PTX), a $GABA_A$ and $GABA_C$ receptor antagonist, blocked the GABA-induced response. Furthermore, BMI-induced membrane depolarization persisted in the presence of PTX or an antagonist cocktail consisting of tetrodotoxin ($Na^+$ channel blocker), AP-5 (NMDA receptor antagonist), CNQX (non-NMDA receptor antagonist), and strychnine (glycine receptor antagonist). Thus BMI induces membrane depolarization by directly acting on postsynaptic Vc SG neurons in a manner which is independent of $GABA_A$ receptors. These results suggest that other unknown mechanisms may be involved in BMI-induced membrane depolarization.

GABAB Receptor Modulation on the Antinociception of Intrathecal Sildenafil in the Rat Formalin Test (쥐의 포르말린 시험에서 척수강 Sildenafil의 항통각효과에 대한 GABAB 수용체 조절성)

  • Kim, Woong Mo;Yoon, Myung Ha;Lee, Hyung Gon;Han, Yong Gu;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.106-110
    • /
    • 2007
  • Background: A phosphodiesterase 5 inhibitor, sildenafil, has been effective against nociception. Several lines of evidence have demonstrated the role of the GABAergic pathway in the modulation of nociception. The impact of the GABA receptors on sildenafil was studied using the formalin test at the spinal level. Methods: Male SD rats were prepared for intrathecal catheterization. The formalin test was induced by subcutaneous injection of formalin solution. The change in the activity of sildenafil was examined after pre-treatment with GABA receptor antagonists ($GABA_A$ receptor antagonist, bicuculline; $GABA_B$ receptor antagonist, saclofen). Results: Intrathecal sildenafil dose-dependently attenuated the flinching observed during phase 1 and 2 in the formalin test. The antinociceptive effect of sildenafil was reversed by the $GABA_B$ receptor antagonist (saclofen) but not by the $GABA_A$ receptor antagonist (bicuculline) in both phases. Conclusions: Intrathecal sildenafil suppressed acute pain and the facilitated pain state. The antinociception of sildenafil is mediated via the $GABA_B$ receptor, but not the $GABA_A$ receptor, at the spinal level.

Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

  • Lee, Jae-Hee;Back, Seung-Keun;Lim, Eun-Jeong;Cho, Gyu-Chong;Kim, Myung-Ah;Kim, Hee-Jin;Lee, Min-Hee;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.59-69
    • /
    • 2010
  • Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists ($1{\mu}g$ bicuculline/rat and $5{\mu}g$ phaclofen/rat), agonists ($1{\mu}g$ muscimol/rat and $0.5{\mu}g$ baclofen/rat) or GABA transporter (GAT) inhibitors ($20{\mu}g$ NNC-711/rat and $1{\mu}g$ SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.

Benzodiazepine System is Involved in Hyperalgesia in Rats Induced by the Exposure to Extremely Low Frequency Magnetic Fields

  • Jeong Ji Hoon;Choi Kyung Bum;Moon Nam Ju;Park Eon Sub;Sohn Uy Dong
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.238-242
    • /
    • 2005
  • Many reports demonstrate that extremely low frequency magnetic fields (ELF MFs, 60 Hz) may be involved in hyperalgesia. In a previous investigation, we suggested that MFs may produce hyperalgesia and such a response may be regulated by the benzodiazepine system. In order to further confirm this effect of MFs, we used diazepam and/or flumazenil with MFs exposure. When testing the pain threshold of rats using hot plate tests, MFs or diazepam ($0.5\;{\mu}g$, i.c.v.; a benzodiazepine receptor agonist) induced hyperalgesic effects with the reduction of latency. These effects were blocked by a pretreatment of flumazenil (1.5 mg/kg, i.p.; a benzodiazepine receptor antagonist). When the rats were exposed simultaneously to MFs and diazepam, the latency tended to decrease without statistical significance. The induction of hyperalgesia by co-exposure to MFs and diazepam was also blocked by flumazenil. However, the pretreatment of GABA receptor antagonists such as bicuculline ($0.1\;{\mu}g$, i.c.v.; a $GABA_A$ antagonist) or phaclofen ($10\;{\mu}g$, i.c.v.; a $GABA_B$ antagonist) did not antagonize the hyperalgesic effect of MFs. These results suggest that the benzodiazepine system may be involved in MFs-induced hyperalgesia.

Flavonoid in Clover Honey Exerts a Hypnotic Effect via Positive Allosteric Modulation of the GABAA-BZD Receptor in Mice

  • Han, Kyoung-Sik;Yang, Hyejin;Yoon, Minseok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1364-1369
    • /
    • 2017
  • There is a growing demand for natural sleep aids due to various side effects of long-term administration of pharmacological treatments for insomnia. Honey has been reported to exhibit numerous potential health benefits, and it is hypothesized that honey may favorably affect insomnia treatment. Therefore, this study was performed to investigate the possible hypnotic effect of clover honey (CH) and to determine its in vivo mechanism. The total flavonoid content (TFC) of CH and fractions extracted with ethylacetate (EtOAc) and $H_2O$ was measured. The pentobarbital-induced sleep test using $GABA_A$-benzodiazepine (BZD) agonists and antagonists was conducted to evaluate the potential mechanism of action behind the sedative-hypnotic activity of CH in mice. The results showed that administration of 500 and 1,000 mg/kg of CH significantly (p<0.01) reduced the sleep latency to a level similar to that of diazepam (DZP, 2 mg/kg), and 1,000 mg/kg of CH significantly (p<0.01) prolonged the sleep duration, which was comparable to that of DZP (2 mg/kg). Administration of the EtOAc fraction with a higher TFC significantly reduced the sleep latency at 50 to 200 mg/kg and prolonged the sleep duration at 100 to 200 mg/kg, which were comparable to those after administration of DZP (2 mg/kg). However, co-administration of CH and EtOAc with flumazenil, a specific $GABA_A-BZD$ receptor antagonist, blocked the hypnotic effect. Our findings suggest that the hypnotic activity of CH may be attributed to allosteric modulation of $GABA_A-BZD$ receptors. The TFC of CH is expected to be a key factor that contributes to its hypnotic effect.

Effect of Diazepam on the Oxytocin Induced Contraction of the Isolated Rat Uterus (Oxytocin의 자궁수축작용에 미치는 Diazepam의 영향)

  • Park, Yoon-Kee;Lee, Sung-Ho;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.359-381
    • /
    • 1992
  • This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat(Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen, weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled($37^{\circ}C$) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GAGA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscimol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxytocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.

  • PDF

Changes of CA1 Excitability in Rats after Prenatal Methylazoxymethanol Treatment

  • Jang, Sung-Young;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • Experimentally induced cortical disorganization exhibits many anatomical features which are characteristic of cortical malformations in children with early-onset epilepsy. We used an immunocytochemical technique and extracellular field potential recordings from the dorsal hippocampus to determine whether the excitability of the CA1 pyramidal cells was enhanced in rats with exnerimentallv induced hippocampal dysplasia. Compared with control rats, the MAM-treated rats displayed a decrease of paired pulse inhibition. When $GABA_A$ receptor antagonists were blocked with $10{\mu}M$ bicuculline the amplitude of the second population spike of the MAM-treated of rats was similar to that of the first population spike, as was in the control rats. The MAM-treated rats had fewer somatostatin and parvalbumin-immunoreactive neurons than the control rats. These results suggest that the enhanced neuronal responsiveness of the in vivo recording of the CA1 in this animal model may involve a reduction of CA1 inhibition.