Benzodiazepine System is Involved in Hyperalgesia in Rats Induced by the Exposure to Extremely Low Frequency Magnetic Fields

  • Jeong Ji Hoon (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Choi Kyung Bum (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • Moon Nam Ju (Department of Ophthalmology, Chung Ang University) ;
  • Park Eon Sub (Department of Pathology, College of Medicine, Chung Ang University) ;
  • Sohn Uy Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University)
  • 발행 : 2005.02.01

초록

Many reports demonstrate that extremely low frequency magnetic fields (ELF MFs, 60 Hz) may be involved in hyperalgesia. In a previous investigation, we suggested that MFs may produce hyperalgesia and such a response may be regulated by the benzodiazepine system. In order to further confirm this effect of MFs, we used diazepam and/or flumazenil with MFs exposure. When testing the pain threshold of rats using hot plate tests, MFs or diazepam ($0.5\;{\mu}g$, i.c.v.; a benzodiazepine receptor agonist) induced hyperalgesic effects with the reduction of latency. These effects were blocked by a pretreatment of flumazenil (1.5 mg/kg, i.p.; a benzodiazepine receptor antagonist). When the rats were exposed simultaneously to MFs and diazepam, the latency tended to decrease without statistical significance. The induction of hyperalgesia by co-exposure to MFs and diazepam was also blocked by flumazenil. However, the pretreatment of GABA receptor antagonists such as bicuculline ($0.1\;{\mu}g$, i.c.v.; a $GABA_A$ antagonist) or phaclofen ($10\;{\mu}g$, i.c.v.; a $GABA_B$ antagonist) did not antagonize the hyperalgesic effect of MFs. These results suggest that the benzodiazepine system may be involved in MFs-induced hyperalgesia.

키워드

참고문헌

  1. Adey, W. R., Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev., 61, 435-514 (1981) https://doi.org/10.1152/physrev.1981.61.2.435
  2. Bormann, J., Electrophysiology of $GABA_{A}$ and $GABA_{B}$ receptor subtypes. Trends Neurosci., 11, 112-116 (1988) https://doi.org/10.1016/0166-2236(88)90156-7
  3. Bowery, N. G., $GABA_{B}$ receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10, 401- 407 (1989) https://doi.org/10.1016/0165-6147(89)90188-0
  4. Costa, E. and Guidotti, A., Molecular mechanisms in the receptor action of benzodiazepines. Annu. Rev. Pharmacol., 19, 531-545 (1979) https://doi.org/10.1146/annurev.pa.19.040179.002531
  5. Enna, S. J. and Karbon, E. W., GABA receptors: an overview, In Olson R. W., and Venter J. C. (Eds.). Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. Liss, New York, pp. 41, (1986)
  6. Frey, A. H., Electromagnetic field interactions with biological systems. FASEB J., 7, 272-281 (1993) https://doi.org/10.1096/fasebj.7.2.8440406
  7. Gould, J. L., Magnetic field sensitivity in animals. Annu. Rev. Physiol., 46, 585-598. (1984) https://doi.org/10.1146/annurev.ph.46.030184.003101
  8. Hillert L., Kolmodin-Hedman B., Hypersensitivity to electricity: sense or sensibility? J. Psychosom. Res., 42, 427-432 (1997) https://doi.org/10.1016/S0022-3999(96)00374-1
  9. Jeong, J. H., Choi, K. B., Yi, B. C., Chun, C. H., Sung, K. Y., Sung, J. Y., Kim, J. H., Gimm, Y. M., Huh, I. H., and Sohn, U. D., Effects of extremely low frequency magnetic fields on pain thresholds in mice: roles of melatonin and opioids. J. Auton. Pharmacol., 20, 259-264 (2000) https://doi.org/10.1046/j.1365-2680.2000.00189.x
  10. Kavaliers, M. and Ossenkopp, K. P., Magnetic field inhibition of morphine-induced analgesia and behavioral activity in mice: evidence for involvement of calcium ions. Brain Res., 379, 30-38 (1986) https://doi.org/10.1016/0006-8993(86)90252-0
  11. Kavaliers, M., Choleris, E., Prato, F. S., and Ossenkopp, E., Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60 Hz magnetic fields in the land snail. Brain Res., 809, 50-57 (1998) https://doi.org/10.1016/S0006-8993(98)00844-0
  12. Kavaliers, M., Ossenkopp, K. P., and Hirst, M., Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice. Physiol. Behav., 32, 261-264 (1984) https://doi.org/10.1016/0031-9384(84)90139-2
  13. Luger, T. J., Hayashi, T., Lorenz, I. H., and Hill, H. F., Mechanism of the influence of midazolam on morphine antinociception at spinal and supraspinal levels in rats. Eur. J. Pharmacol., 271, 421-431 (1994) https://doi.org/10.1016/0014-2999(94)90802-8
  14. Mantegazza, P., Parenti, M., Tammiso, R., Vita, P., Zambotti, F., and Zonta, N., Modification of the antinociceptive effect of morphine by centrally administered diazepam and midazolam. Br. J. Pharmacol., 75, 569-572 (1982) https://doi.org/10.1111/j.1476-5381.1982.tb09175.x
  15. Matsumoto, R., GABA receptors: are cellular differences reflected in function. Brain Res. Rev., 14, 203-225 (1989) https://doi.org/10.1016/0165-0173(89)90001-5
  16. Niv, D., Davidovich, S., Geller, E., and Urca, G., Analgesic and hyperalgesic effects of midazolam: dependence on route of administration. Anesth. Anag., 7, 1169-1173 (1988)
  17. Ossenkopp, K. P. and Ossenkopp, M. D., Geophysical variables and behavior: XI. Open-field behaviors in young rats exposed to an elf rotating magnetic field. Psychol. Rep., 52, 343-349 (1983) https://doi.org/10.2466/pr0.1983.52.2.343
  18. Ossenkopp, K. P., Kavaliers, M., Prato, F. S., Teskey, G. C., Sestini, E., and Hirst, M., Exposure to nuclear magnetic resonance imaging procedure attenuates morphine-induced analgesia in mice. Life Sci., 37, 1507-1514 (1985) https://doi.org/10.1016/0024-3205(85)90182-1
  19. Papi, F., Ghione, S., Rosa, C., del Seppia, C., and Luschi, P., Exposure to oscillating magnetic fields influences sensitivity to electrical stimuli. II. Experiments on humans. Bioelectromagnetics, 16, 295-300 (1995) https://doi.org/10.1002/bem.2250160505
  20. Paxinos, G. and Watson, C., The rat brain in stereotaxic coordinates. 2nd edn., Academic Press, San Diego, (1986)
  21. Rosland, J. H., Hunskaar, S., and Hole, K., Diazepam attenuates morphine antinociception test-dependently in mice. Pharmacol. Toxicol., 66, 382-386 (1990) https://doi.org/10.1111/j.1600-0773.1990.tb00766.x
  22. Tallman, J. and Gallaher, D., The GABAergic system: a locus of benzodiazepine action. Annu. Rev. Neurosci., 8, 21-24 (1985) https://doi.org/10.1146/annurev.ne.08.030185.000321
  23. Tatsuo, M. A., Salgado, J. V., Yokoro, C. M., and Duarte, I. D., and Francischi, J. N., Midazolam-induced hyperalgesia in rats: modulation via $GABA_{A}$ receptors at supraspinal level. Eur. J. Pharmacol., 370, 9-15 (1999) https://doi.org/10.1016/S0014-2999(99)00096-5