Bicuculline Methiodide (BMI) Induces Membrane Depolarization of The Trigeminal Subnucleus Caudalis Substantia Gelatinosa Neuron in Mice Via Non-$GABA_A$ Receptor-Mediated Action

  • Yin, Hua (Department of Oral Physiology, Chonbuk National University) ;
  • Park, Seon-Ah (Department of Oral Physiology, Chonbuk National University) ;
  • Choi, Soon-Jeong (Department of Oral Medicine, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University) ;
  • Bhattarai, Janardhan P. (Department of Oral Physiology, Chonbuk National University) ;
  • Park, Soo-Joung (Department of Oral Physiology, Chonbuk National University) ;
  • Suh, Bong-Jik (Department of Oral Medicine, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University) ;
  • Han, Seong-Kyu (Department of Oral Physiology, Chonbuk National University)
  • Published : 2008.12.31

Abstract

Bicuculline is one of the most commonly used $GABA_A$ receptor antagonists in electrophysiological research. Because of its poor water solubility, bicuculline quaternary ammonium salts such as bicuculline methiodide (BMI) and bicuculline methbromide are preferred. However, a number of studies have shown that BMI has non-$GABA_A$ receptor-mediated effects. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is implicated in the processing of nociceptive signaling. In this study, we investigated whether BMI has non-GABA receptor-mediated activity in Vc SG neurons using a whole cell patch clamp technique. SG neurons were depolarized by application of BMI ($20{\mu}M$) using a high $Cl^-$ pipette solution. GABA ($30-100{\mu}M$) also induced membrane depolarization of SG neuron. Although BMI is known to be a $GABA_A$ receptor antagonist, GABA-induced membrane depolarization was enhanced by co-application with BMI. However, free base bicuculline (fBIC) and picrotoxin (PTX), a $GABA_A$ and $GABA_C$ receptor antagonist, blocked the GABA-induced response. Furthermore, BMI-induced membrane depolarization persisted in the presence of PTX or an antagonist cocktail consisting of tetrodotoxin ($Na^+$ channel blocker), AP-5 (NMDA receptor antagonist), CNQX (non-NMDA receptor antagonist), and strychnine (glycine receptor antagonist). Thus BMI induces membrane depolarization by directly acting on postsynaptic Vc SG neurons in a manner which is independent of $GABA_A$ receptors. These results suggest that other unknown mechanisms may be involved in BMI-induced membrane depolarization.

Keywords

References

  1. Bormann J. The 'ABC' of GABA receptors. Trends Pharmacol Sci. 2000;21:16-9 https://doi.org/10.1016/S0165-6147(99)01413-3
  2. Bracci E, Ballerini L, Nistri A. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord. J Neurophysiol. 1996;75:640-7 https://doi.org/10.1152/jn.1996.75.2.640
  3. Cazalets JR, Sqalli-Houssaini Y, Clarac F. GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J Physiol. 1994;474:173-81 https://doi.org/10.1113/jphysiol.1994.sp020011
  4. Cowley KC, Schmidt BJ. Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol. 1995;74:1109-17 https://doi.org/10.1152/jn.1995.74.3.1109
  5. Curtis DR, Duggan AW, Felix D, Johnston GA. GABA, bicuculline and central inhibition. Nature. 1970;226:1222-4 https://doi.org/10.1038/2261222a0
  6. Debarbieux F, Brunton J, Charpak S. Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. J Neurophysiol. 1998;79:2911-8 https://doi.org/10.1152/jn.1998.79.6.2911
  7. Feigenspan A, Wassle H, Bormann J. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature. 1993;361:159-62 https://doi.org/10.1038/361159a0
  8. Han SK, Herbison AE. Norepinephrine suppresses gonadotropinreleasing hormone neuron excitability in the adult mouse. Endocrinology. 2008;149:1129-35 https://doi.org/10.1210/en.2007-1241
  9. Han SK, Park JR, Park SA, Chun SW, Lee JC, Lee SY, Ryu PD, Park SJ. Noradrenaline inhibits substantia gelatinosa neurons in mice trigeminal subnucleus caudalis via alpha(2) and beta adrenoceptors. Neurosci Lett. 2007;411:92-7 https://doi.org/10.1016/j.neulet.2006.10.041
  10. Heyer EJ, Nowak LM, Macdonald RL. Bicuculline: a convulsant with synaptic and nonsynaptic actions. Neurology. 1981;31:1381-90 https://doi.org/10.1212/WNL.31.11.1381
  11. Johnson SW, Seutin V. Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive $Ca^ {2+}$-activated $K^+$ currents. Neurosci Lett. 1997;231:13-6 https://doi.org/10.1016/S0304-3940(97)00508-9
  12. Johnston GA. GABAc receptors: relatively simple transmittergated ion channels? Trends Pharmacol Sci. 1996;17:319-23 https://doi.org/10.1016/0165-6147(96)10038-9
  13. Jovanovic K, Petrov T, Stein RB. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro. Exp Brain Res. 1999;129:172-84 https://doi.org/10.1007/s002210050887
  14. Olsen RW, Ban M, Miller T. Studies on the neuropharmacological activity of bicuculline and related compounds. Brain Res. 1976;102:283-99 https://doi.org/10.1016/0006-8993(76)90883-0
  15. Park JS, Higashi H, Nagata K, Yoshimura M. Bicucullineresistant, $C1^-$ dependent GABA response in the rat spinal dorsal horn. Neurosci Res. 1999;33:261-8 https://doi.org/10.1016/S0168-0102(99)00016-4
  16. Qian H, Dowling JE.: Novel GABA responses from roddriven retinal horizontal cells. Nature. 1993;361:162-4 https://doi.org/10.1038/361162a0
  17. Sessle, B.J. Mechanisms of trigeminal and occipital pain. Pain Rev. 1996;3:91-116
  18. Seutin V, Johnson SW. Recent advances in the pharmacology of quaternary salts of bicuculline. Trends Pharmacol Sci. 1999;20:268-70 https://doi.org/10.1016/S0165-6147(99)01334-6
  19. Seutin V, Scuvee-Moreau J, Dresse A. Evidence for a non-GABAergic action of quaternary salts of bicuculline on dopaminergic neurones. Neuropharmacology 1997;36:1653-7 https://doi.org/10.1016/S0028-3908(97)00147-0
  20. Shi WX, Rayport S. GABA synapses formed in vitro by local axon collaterals of nucleus accumbens neurons. J Neurosci. 1994;14:4548-60 https://doi.org/10.1523/JNEUROSCI.14-07-04548.1994
  21. Zhang ZW, Feltz P.: Bicuculline blocks nicotinic acetylcholine response in isolated intermediate lobe cells of the pig. Br J Pharmacol. 1991;102:19-22 https://doi.org/10.1111/j.1476-5381.1991.tb12125.x