• Title/Summary/Keyword: GA(genetic algorithm)

Search Result 1,520, Processing Time 0.026 seconds

Application of Intensity-Duration-Frequency Curve to Korea Derived by Cumulative Distribution Function (누가분포함수를 활용한 강우강도식의 국내 적용성 평가)

  • Kim, Kewtae;Kim, Taesoon;Kim, Sooyoung;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.363-374
    • /
    • 2008
  • Intensity-Duration-Frequency (IDF) curve that is essential to calculate rainfall quantiles for designing hydraulic structures in Korea is generally formulated by regression analysis. In this study, IDF curve derived by the cumulative distribution function ("IDF by CDF") of the proper probability distribution function (PDF) of each site is suggested, and the corresponding parameters of IDF curve are computed using genetic algorithm (GA). For this purpose, IDF by CDF and the conventional IDF derived by regression analysis ("IDF by REG") were computed for 22 Korea Meteorological Administration (KMA) rainfall recording sites. Comparisons of RMSE (root mean squared error) and RRMSE (Relative RMSE) of rainfall intensities computed from IDF by CDF and IDF by REG show that IDF by CDF is more accurate than IDF by REG. In order to accommodate the effect of the recent intensive rainfall of Korea, the rainfall intensities computed by the two IDF curves are compared with that by at-site frequency analysis using the rainfall data recorded by 2006, and the result from IDF by CDF show the better performance than that from IDF by REG. As a result, it can be said that the suggested IDF by CDF curve would be the more efficient IDF curve than that computed by regression analysis and could be applied for Korean rainfall data.

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Optimal Design of Stator Shape for Cogging Torque Reduction of Single-phase BLDC Motor (단상 BLDC 전동기의 코깅토크 저감을 위한 고정자 형상 최적설계)

  • Park, Young-Un;So, Ji-Young;Chung, Dong-Hwa;Yoo, Yong-Min;Cho, Ju-Hee;Ahn, Kang-Soon;Kim, Dae-Kyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1528-1534
    • /
    • 2013
  • This paper proposes the optimal design of stator shape for cogging torque reduction of single-phase brushless DC (BLDC) motor with asymmetric notch. This method applied size and position of asymmetric notches to tapered teeth of stator for single-phase BLDC motor. Which affects the variation of the residual flux density of the permanent magnet. The process of optimal design included the extraction of the sampling point by using Latin Hypercube Sampling(LHS), and involved the creation of an approximation model by using kriging method. Also, the optimum point of the design variables were discovered by using the Genetic Algorithm(GA). Finite element analysis was used to calculate the characteristics analysis and cogging torque. As a result of finite element analysis, cogging torque were reduced approximately 39.2% lower than initial model. Also experimental result were approximately 38.5% lower than initial model. The period and magnitude of the cogging torque were similar to the results of FEA.

Determination of the Optimal Operating Condition of Dual Mixed Refrigerant Cycle of LNG FPSO Topside Liquefaction Process (LNG FPSO Topside의 액화 공정에 대한 이중 혼합 냉매 사이클의 최적 운전 조건 결정)

  • Lee, Joon-Chae;Cha, Ju-Hwan;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • In this study, the optimal operating conditions for the dual mixed refrigerant(DMR) cycle were determined by considering the power efficiency. The DMR cycle consists of compressors, heat exchangers, seawater coolers, valves, phase separators, tees, and common headers, and the operating conditions include the equipment's flow rate, pressure, temperature, and refrigerant composition per flow. First, a mathematical model of the DMR cycle was formulated in this study by referring to the results of a past study that formulated a mathematical model of the single mixed refrigerant(SMR) cycle, which consists of compressors, heat exchangers, seawater coolers, and valves, and by considering as well the tees, phase separators, and common headers. Finally, in this study, the optimal operating conditions from the formulated mathematical model was obtained using a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP). Moreover, the required power at the obtained conditions was decreased by 1.4% compared with the corresponding value from the past relevant study of Venkatarathnam.

Multi-floor Layout for the Liquefaction Process Systems of LNG FPSO Using the Optimization Technique (최적화 기법을 이용한 LNG FPSO 액화 공정 장비의 다층 배치)

  • Ku, Nam-Kug;Lee, Joon-Chae;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.68-78
    • /
    • 2012
  • A layout of an LNG FPSO should be elaborately determined as compared with that of an onshore plant because many topside process systems are installed on the limited area; the deck of the LNG FPSO. Especially, the layout should be made as multi-deck, not single-deck and have a minimum area. In this study, a multi-floor layout for the liquefaction process, the dual mixed refrigerant(DMR) cycle, of LNG FPSO was determined by using the optimization technique. For this, an optimization problem for the multi-floor layout was mathematically formulated. The problem consists of 589 design variables representing the positions of topside process systems, 125 equality constraints and 2,315 inequality constraints representing limitations on the layout of them, and an objective function representing the total layout cost. To solve the problem, a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP) was used in this study. As a result, we can obtain a multi-floor layout for the liquefaction process of the LNG FPSO which satisfies all constraints related to limitations on the layout.

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel (자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

Ordinal Optimization Theory Based Planning for Clustered Wind Farms Considering the Capacity Credit

  • Wang, Yi;Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Li, Hui;Xiao, Jinyu;Wang, Zhidong;Shi, Rui;Wang, Shuai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1930-1939
    • /
    • 2015
  • Wind power planning aims to locate and size wind farms optimally. Traditionally, wind power planners tend to choose the wind farms with the richest wind resources to maximize the energy benefit. However, the capacity benefit of wind power should also be considered in large-scale clustered wind farm planning because the correlation among the wind farms exerts an obvious influence on the capacity benefit brought about by the combined wind power. This paper proposes a planning model considering both the energy and the capacity benefit of the wind farms. The capacity benefit is evaluated by the wind power capacity credit. The Ordinal Optimization (OO) Theory, capable of handling problems with non-analytical forms, is applied to address the model. To verify the feasibility and advantages of the model, the proposed model is compared with a widely used genetic algorithm (GA) via a modified IEEE RTS-79 system and the real world case of Ningxia, China. The results show that the diversity of the wind farm enhances the capacity credit of wind power.