• 제목/요약/키워드: G-protein-coupled signaling

검색결과 115건 처리시간 0.023초

3D QSAR Study of 2-Methoxyphenylpiperazinylakanamides as 5-Hydroxytryptamine (Serotonin) Receptor 7 Antagonists

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권2호
    • /
    • pp.128-135
    • /
    • 2016
  • 5-hydroxytryptamine (serotonin) receptor ($5-HT_7R$) 7 is one of G-Protein coupled receptors, which is activated by the neurotransmitter Serotonin. After activation by serotonin, $5-HT_7$ activates the production of the intracellular signaling molecule cyclic AMP. $5-HT_7$ receptor has been found to be involved in the pathophysiology of various disorders. It is reported that $5-HT_7$ receptor antagonists can be used as antidepressant agents. In this study, we report the important structural and chemical parameters for 2-methoxyphenylpiperazinylakanamides as $5-HT_7R$ inhibitors. A 3D QSAR study based on comparative molecular field analysis (CoMFA) was performed. The best predictions were obtained for the best CoMFA model with $q^2$ of 0.594 with 6 components, $r^2$ of 0.986, Fisher value as 60.607, and an estimated standard error of 0.043. The predictive ability of the test set was 0.602. Results obtained the CoMFA models suggest that the data are well fitted and have high predictive ability. The contour maps are generated and studied. The contour analyses may serve as tool in the future for designing of novel and more potent $5-HT_7R$ derivatives.

Ceramide and Sphingosine 1-Phosphate in Liver Diseases

  • Park, Woo-Jae;Song, Jae-Hwi;Kim, Goon-Tae;Park, Tae-Sik
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.419-430
    • /
    • 2020
  • The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists

  • Park, Jong Yung;Chae, Suji;Kim, Chang Seop;Kim, Yoon Jae;Yi, Hyun Joo;Han, Eunjoo;Joo, Youngshin;Hong, Surim;Yun, Jae Won;Kim, Hyojung;Shin, Kyung Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.427-448
    • /
    • 2019
  • Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying $K^+$ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.

Ginseng Saponin as an Antagonist for Gap Junctional Channels

  • Rhee, Seung-Keun
    • Journal of Ginseng Research
    • /
    • 제30권2호
    • /
    • pp.64-69
    • /
    • 2006
  • Gap junctional channels, allowing rapid intercellular communication and synchronization of coupled cell activities, play crucial roles in many signaling processes, including a variety of cell activities. Consequently, a modulation of the gap junctional intercellular communication (GJIC) should be a potential pharmacological target. In the present, the GJIC of a epithelial-derived rat mammary cells (BICR-M1Rk) was assessed in the presence of ginseng saponin, by using an established method of scrape-loading dye transfer assay. The transfer of Lucifer yellow (diameter: 1.2 nm) among the neighboring BICR-M1Rk cells, in which connexin43 (Cx43) is a major gap junction channel-forming protein, was significantly retarded at a concentration of $10{\mu}g/ml$ ginseng saponin. By using both methods of RT-PCR and Western blotting, it was demonstrated that ginseng saponin modulated neither the mRNA synthesis of Cx43 nor the translational process of Cx43. This ginseng saponin-induced modification of GJIC was a similar phenomenon observed under the $\beta$-glycyrrhetinic acid treatment, a well-known gap junction channel blocker. Taken together, it is reasonable to conclude that the ginseng saponin inhibits GJIC only by modulating the gating property of gap junction channels.

Expression of Kisspeptin in the Adult Hamster Testis

  • Park, Jin-Soo;Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권3호
    • /
    • pp.107-115
    • /
    • 2022
  • Kisspeptins, products of KISS1 gene, are ligands of the G-protein coupled receptor (GPR54), and the kisspeptin-GPR54 signaling has an important role as an upstream regulator of gonadotropin releasing hormone (GnRH) neurons. Interestingly, extrahypothalamic expressions of kisspeptin/GPR-54 in gonads have been found in primates and experimental rodents such as rats and mice. Hamsters, another potent experimental rodent, also have a kisspeptin-GPR54 system in their ovaries. The presence of testicular kisspeptin-GPR54 system, however, remains to be solved. The present study was undertaken to determine whether the kisspeptin is expressed in hamster testis. To do this, reverse transcription-polymerase chain reactions (RT-PCRs) and immunohistochemistry (IHC) were employed. After the nest PCR, two cDNA products (320 and 280 bp, respectively) were detected by 3% agarose gel electrophoresis, and sequencing analysis revealed that the 320 bp product was correctly amplified from hamster kisspeptin cDNA. Modest immunoreactive (IR) kisspeptins were detected in Leydig-interstitial cells, and the weak signals were detected in germ cells, mostly in round spermatids and residual bodies of elongated spermatids. In the present study, we found the kisspeptin expression in the testis of Syrian hamster. Further studies on the local role(s) of testicular kisspeptin are expected for a better understanding the physiology of hamster testis, including photoperiodic gonadal regression specifically occurred in hamster gonads.

Odorant receptors in cancer

  • Chung, Chan;Cho, Hee Jin;Lee, ChaeEun;Koo, JaeHyung
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.72-80
    • /
    • 2022
  • Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets.

Domperidone, a Dopamine Receptor D2 Antagonist, Induces Apoptosis by Inhibiting the ERK/STAT3-Mediated Pathway in Human Colon Cancer HCT116 Cells

  • So Jin Sim;Jeong-Hoon Jang;Joon-Seok Choi;Kyung-Soo Chun
    • Biomolecules & Therapeutics
    • /
    • 제32권5호
    • /
    • pp.568-576
    • /
    • 2024
  • Colorectal cancer (CRC) continues to demonstrate high incidence and mortality rates, emphasizing that implementing strategic measures for prevention and treatment is crucial. Recently, the dopamine receptor D2 (DRD2), a G protein-coupled receptor, has been reported to play multiple roles in growth of tumor cells. This study investigated the anticancer potential of domperidone, a dopamine receptor D2 antagonist, in HCT116 human CRC cells. Domperidone demonstrated concentration- and time-dependent reductions in cell viability, thereby inducing apoptosis. The molecular mechanism revealed that domperidone modulated the mitochondrial pathway, decreasing mitochondrial Bcl-2 levels, elevating cytosolic cytochrome C expression, and triggering caspase-3, -7, and -9 cleavage. Domperidone decreased in formation of β-arrestin2/MEK complex, which contributing to inhibition of ERK activation. Additionally, treatment with domperidone diminished JAK2 and STAT3 activation. Treatment of U0126, the MEK inhibitor, resulted in reduced phosphorylation of MEK, ERK, and STAT3 without alteration of JAK2 activation, indicating that domperidone targeted both MEK-ERK-STAT3 and JAK2-STAT3 signaling pathways. Immunoblot analysis revealed that domperidone also downregulated DRD2 expression. Domperidone-induced reactive oxygen species (ROS) generation and N-acetylcysteine treatment mitigated ROS levels and restored cell viability. An in vivo xenograft study verified the significant antitumor effects of domperidone. These results emphasize the multifaceted anticancer effects of domperidone, highlighting its potential as a promising therapeutic agent for human CRC.

네트워크 약리학 분석을 통한 뚜렛 증후군에 유용할 것으로 예측되는 한약 자원 탐색 (Discovery of Herbal Medicine Resources through Network Pharmacology Analysis Predicted to Be Useful for Tourette Syndrome)

  • 이병호;조수인
    • 턱관절균형의학회지
    • /
    • 제10권1호
    • /
    • pp.12-20
    • /
    • 2020
  • Objectives: Tourette syndrome (TS) is a disease that occurs evenly in many social classes. Despite the long experience of drug treatment, the preference is low due to various side effects. The aim of this study was to discover herbal medicine resources through network pharmacology analysis predicted to be useful for Tourette syndrome. Methods: We used Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) to identify herbal medicines that can be used for TS by using network pharmacology research methods and to predict the mechanism of action. After evaluating compounds of each identified herb, molecular target proteins and mechanisms of action were analyzed, focusing on compounds that are likely to exhibit clinical activity in consideration of the pharmacokinetic parameters of these individual compounds. Results: Fifty nine ingredients such as atropine, veraguensin, and nuciferin among the compounds contained in 48 types of medicinal herbs such as Daturae Flos (洋金花), Salviae Radix (丹参), and Nelumbinis Plumula (蓮子心) act on the D(2) dopamine receptor, which is a protein involved in the development of TS. It has been found that atropine, veraguensin, and nuciferin are highly likely to exhibit activity by acting on the G protein-coupled receptor signaling pathway. Conclusions: It can be used in conjunction with non-invasive treatment means such as FCST Yinyang Balancing Appliance with herbal therapy to bring about a significant therapeutic effect, and it will be possible to develop a treatment that can replace drug therapy used in Western medicine.

Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders

  • Han, Yong-Hyun;Lee, Kyeongjin;Saha, Abhirup;Han, Juhyeong;Choi, Haena;Noh, Minsoo;Lee, Yun-Hee;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.455-464
    • /
    • 2021
  • Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.

Glucose-dependent insulinotropic polypeptide (GIP) alleviates ferroptosis in aging-induced brain damage through the Epac/Rap1 signaling pathway

  • Jiwon Ko;Soyoung Jang;Soyeon Jang;Song Park;Junkoo Yi;Dong Kyu Choi;Seonggon Kim;Myoung Ok Kim;Su-Geun Lim;Zae Young Ryoo
    • BMB Reports
    • /
    • 제57권9호
    • /
    • pp.417-423
    • /
    • 2024
  • Glucose-dependent insulinotropic polypeptide (GIP), a 42-amino-acid hormone, exerts multifaceted effects in physiology, most notably in metabolism, obesity, and inflammation. Its significance extends to neuroprotection, promoting neuronal proliferation, maintaining physiological homeostasis, and inhibiting cell death, all of which play a crucial role in the context of neurodegenerative diseases. Through intricate signaling pathways involving its cognate receptor (GIPR), a member of the G protein-coupled receptors, GIP maintains cellular homeostasis and regulates a defense system against ferroptosis, an essential process in aging. Our study, utilizing GIP-overexpressing mice and in vitro cell model, elucidates the pivotal role of GIP in preserving neuronal integrity and combating age-related damage, primarily through the Epac/Rap1 pathway. These findings shed light on the potential of GIP as a therapeutic target for the pathogenesis of ferroptosis in neurodegenerative diseases and aging.