• Title/Summary/Keyword: G-homotopy

Search Result 52, Processing Time 0.018 seconds

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

A FUNCTIONS AND ITS GRAPH FUCTION

  • CHAE G. I.;SINGH V. P.;PARK Y. S.;GIHARE R. P.
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • For topological spaces X, Y and the function f : X → Y, it induces a function gr(f) : X → X x Y defined as gr(f)(χ) = (χ, f(χ)), for every χ ∈ X. It deals with some preliminary investigations relating to the behavior of functions and its graph functions. It has also been found that continuous functions are homotopic if and only if their graph functions are homotopic.

  • PDF