• Title/Summary/Keyword: G-Rb₁-Rc

Search Result 88, Processing Time 0.026 seconds

Antiviral activity of ginsenosides against coxsackievirus B3, enterovirus 71, and human rhinovirus 3

  • Song, Jae-Hyoung;Choi, Hwa-Jung;Song, Hyuk-Hwan;Hong, Eun-Hye;Lee, Bo-Ra;Oh, Sei-Ryang;Choi, Kwangman;Yeo, Sang-Gu;Lee, Yong-Pyo;Cho, Sungchan;Ko, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • Background: Ginsenosides are the major components responsible for the biochemical and pharmacological actions of ginseng, and have been shown to have various biological activities. In this study, we investigated the antiviral activities of seven ginsenosides [protopanaxatriol (PT) type: Re, Rf, and Rg2; protopanaxadiol (PD) type: Rb1, Rb2, Rc, and Rd)] against coxsackievirus B3 (CVB3), enterovirus 71 (EV71), and human rhinovirus 3 (HRV3). Methods: Assays of antiviral activity and cytotoxicity were evaluated by the sulforhodamine B method using the cytopathic effect (CPE) reduction assay. Results: The antiviral assays demonstrated that, of the seven ginsenosides, the PT-type ginsenosides (Re, Rf, and Rg2) possess significant antiviral activities against CVB3 and HRV3 at a concentration of $100{\mu}g/mL$. Among the PT-type ginsenosides, only ginsenoside Rg2 showed significant anti-EV71 activity with no cytotoxicity to cells at $100{\mu}g/mL$. The PD-type ginsenosides (Rb1, Rb2, Rc, and Rd), by contrast, did not show any significant antiviral activity against CVB3, EV71, and HRV3, and exhibited cytotoxic effects to virus-infected cells. Notably, the antiviral efficacies of PT-type ginsenosides were comparable to those of ribavirin, a commonly used antiviral drug. Conclusion: Collectively, our findings suggest that the ginsenosides Re, Rf, and Rg2 have the potential to be effective in the treatment of CVB3, EV71, and HRV3 infection.

The Action Mechanism of several Ginsenosides in their Regulatory Action on the ACtivities of Adenylate Cyclase and Guanylate Cyclase (몇가지 진세노시드들의 아데닐산 고리화 효소와 구아닐산 고리화 효소의 활동성들에 대한 조절작용에 있어서의 작용 메카니즘)

  • 서기림;문종건
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1983
  • The effects of the five ginsenosides on the activities of particulate adenylate cyclase and particulate guanylate cylase of rat brain have been studied. The range of concentrations of ginsenosides were between 10$\mu\textrm{g}$ and 500$\mu\textrm{g}$ per 500${mu}ell$ reaction mixture, Also, the effects of three ginsenosides on the activity of soluble guanylate cylace have been studied in the same range of concentrations as in particulate adenylate cyclase. Only ginsenoside Re has shown the reciprocal feeects when tested with particulated adenylate cyclase and particulate guanylated cyclase. Regulatory action of the several mononucleotides on the activities of adenylate cyclase and guanylate cyclase was examined. Ginsenoside Rd-inhibited adenylate cyclase was activated in great extent by the addition of increasing amount of GMP. On the other hand, ginsenoside Rc-activated guanylate cyclase was inhibited by the addition of increasing amount of AMP and GMP. The fact that the stimulatory action of GMP is observed only with particulated adenylate cyclase but not with soluble suanylate cyclase suggests that the action is membrane-related one. The competitive action was observed between ginsenoside Rb2 and dopamine in their binding to the receptors. This result is clear-cut evidence that the ginsenoside Rb2 binds specifically to $\beta$-adrenergic receptors.

  • PDF

Effects of pH and High Temperature Treatment on the Changes of Major Ginsenosides Composition in Korean Red Ginseng Water Extract (pH 및 고온 열처리가 홍삼물추출물의 주종 사포닌 성분변화에 미치는 영향)

  • Choi, Keum-Hee;Kwak, Yi-Seong;Rhee, Man-Hee;Hwang, Mi-Sun;Kim, Seok-Chang;Park, Chae-Kyu;Han, Gyeong-Ho;Song, Kyung-Bin
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • This study was carried out to investigate the changes of ginsenosides composition in Korean red ginseng water extract (RGWE) after heated with high temperatures above $100^{\circ}C$. RGWEs were adjusted with pH 3.0, pH 7.0 and pH 10.0, respectively, and then heated at 100,110 and $120^{\circ}C$ for 30 minutes by using autoclave. Total ginsenosides of RGWE treated with heating showed decreasing tendency when compared with control. By TLC analysis, decreasing effect of ginsenosides in RGWE were significantly observed in the acidic condition of pH 3.0, particulary. By HPLC analysis, total ginsenoside of control showed 1.89%, while those of RGWE treated with 100, 110 and $120^{\circ}C$ showed 1.22, 1.05 and 0.97%, respectively. The ratio of protopanaxadiol (PD) to protopanaxatriol (Pr) saponins in control was 1.89, while that of PD/PT in treated RGWEs were level of 1.33 to 1.47. By the result of decreased ratio of PD/PT in RGWE, it was considered that PD type saponin such as ginsenoside$-Rb_{1}$, $-Rb_{1}$, -Rc and -Rd was more unstable than PT type saponin such as ginsenoside-Re and Rg against high temperature heating above $100^{\circ}C$.

Effects of Quality Characteristics and Antioxidant Activity of Korean Cultivated Wild Ginseng Extract (산양삼의 품질특성 및 항산화 활성에 미치는 영향)

  • Kang, Kyoung-Myoung;Lee, Jin-Young;Kim, Myung-Uk;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1740-1746
    • /
    • 2016
  • In this study, we investigated the nutritional and functional constituents as well as quality characteristics and antioxidant activity of Korean cultivated wild ginseng (KG). The chemical compositions and amino acid content of KG were 7.56% water, 73.01% carbohydrates, 12.58% protein, 1.99% lipids, and 5.54% ash as well as 16.17 mg/g of amino acids, respectively. The major ginsenoside and minor ginsenoside contents of KG were 15.94 mg/g and 0.04 mg/g, respectively. The total polyphenol and flavonoid contents of KGE (Korean cultivated wild ginseng with 70% ethanol extract) were 8.93 mg GAE/g and 3.96 mg RHE/g, respectively. KGE also showed higher antioxidant activity than the other extracts (KGW, Korean cultivated wild ginseng with water extract) with regard to DPPH and ABTS radical scavenging activities (57.75% and 70.73%, respectively), nitrite oxide scavenging activity (44.01%), SOD-like activity (78.05%), reducing power activity ($1.08OD_{700nm}$), and ferrous ion-chelating activity (65.33%). Additionally, KGE had higher elastase, collagenase, and tyrosinase inhibition activities than KGW. These results suggest that KGE can be used as a bioactive and functional material in the food industry.

Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis

  • Han, Jiahong;Dai, Min;Zhao, Yan;Cai, Enbo;Zhang, Lianxue;Jia, Xiaohuan;Sun, Nian;Fei, Xuan;Shu, Hui
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.291-299
    • /
    • 2020
  • Background: Ginseng (G) and Ligustrum lucidum Ait (LLA) are core traditional Chinese medicines in treating myelosuppression formula. The present study was designed to profile effect of G and LLA herb pair (G-LLA) on myelosuppressed mice. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide (Cy). Hematopoietic function of bone marrow was measured by hemopoietic progenitor cell culture and peripheral blood count, and serum hemopoietic factors were tested by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. HPLC was used to measure 20 potential chemical components related to myelosuppression, including ginsenoside Rg1, Re, Rb1, Rc, Rb2, Rb3, Rd, Rk3, Rh4, 20 (S)-Rg3, 20 (R)-Rg3, Rk1, Rg5, salidroside, and so on. Results: G, LLA, and G-LLA improved the amount of peripheral blood cells and bone marrow cells of myelosuppressed mice (P < 0.01). They significantly increased the colony quantity of colony-forming unit-granulocyte macrophage, burst-forming unit-erythroid, colony-forming unit-erythroid, and colony-forming unit-megakaryocyte and amount of G2/M and S phase cells (P < 0.01). They also significantly decreased the amount of hematopoiesis-related cytokines (P < 0.01). The content of chemical components in G-LLA changed, and the change of rare saponin was the most obvious. Conclusion: These results show that G-LLA herb pair might produce synergistic or complementary compatibility effects on bone marrow suppression after chemotherapy. It suggests that the substance basis of G-LLA for treating bone marrow suppression may be effective chemical components.

Comparison of Malonyl Ginsenoside Contents in Parts of Korean Ginseng (고려인삼의 부위별 Malonyl Ginsenoside 함량 비교 분석)

  • Park, Young Sik;Oh, Myeong Hwan;Lee, Hwan;Jung, Jong Tae;Jo, Yun Ho;Pyo, Mi Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.82-87
    • /
    • 2017
  • Malonyl ginsenoside content of the Panax ginseng C.A. Meyer is known to account for 35% to 60% of total ginsenosides content. However, its distribution by ginseng part has not been studied. In this study, four kinds of malonyl ginsenosides were compared in Korean white ginseng part using the purified malonyl ginsenoside standards in our laboratory. White ginseng was prepared by the freeze drying ($-70^{\circ}C$, 48 h) or air drying ($50^{\circ}C$, 48 h) methods form 4-year-old ginseng. Malonyl ginsenoside content of main, lateral, and fine root, and of the main root without skin and its skin was compared. Malonyl ginsenosides (m-Rb1, m-Rb2, m-Rc and m-Rd) content (58%, 19.17 mg/g) in total ginsenosides of air dried white ginseng was decreased about 4% compared to its content of freeze dried white ginseng (62%, 20.40 mg/g). Malonyl ginsenoside content was the highest in fine root, compared to the main or lateral root. Malonyl ginsenosides content in skin of main root was 20.08 mg/g, while its content of the main root without skin was 2.58 mg/g. These results are expected to help establishment of quality specification and processing process in Korean white ginseng.

Effects of Ginsenosides Injected Intrathecally or Intracerebroventricularly on Antinociception Induced by D-$Pen^{2,5}$-enkephalin Administered Intracerebroventricularly in the Mouse

  • Hong-Won Suh;Don
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The effect of total saponin fraction of Ginseng injected intrathecally (i.1.) or in- tracerebroventricularly (i.c.v.) on the antinociception induced by D-$Pen^{2,5}$- enkephalin (DPDPE) ad ministered i.c.v. was studied in ICR mice in the present study. The antinociception was assessed by the tail-flick test. Total saponin fraction at doses 0.1 to 1.0 $\mu\textrm{g}$, which administered i.t. Alone did not affect the latencies of tail-flick threshold, attenuated dose-dependently the inhibition of the tail-flick response induced by i.c.v. administered DPDPE (10 $\mu\textrm{g}$). However, total saponin fraction at doses 1 to 20 $\mu\textrm{g}$, which administered i.c.v. Alone did not affect the latencies of the tail-flick response, did not affect i.c.v. administered DPDPE (10 $\mu\textrm{g}$)-induced antinociception. The duration of antagonistic action of total saponin fraction against DPDPE-induced antlnociception was lasted at least for 6 hrs. Various doses of ginsenosides Rd, but not $\Rb_2$, Rc, Rg1, and $\Rb_1$ and Re, injected i.t. Dose-dependently attenuated antinociception induced by DPDPE administered i.c.v. Our results indicate that total saponin fraction injected spinally appears to have antagonistic action against the antinociception induced by supraspinally applied DPDPE. Ginsenoside Rd appears to be responsible for blocking j.c.v. administered DPDPE-induced antinociception. On the other hand, total ginseng fraction, at supraspinal sites, may not have an antagonistic action against the antinociception induced by DPDPE.

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf (발효처리가 인삼잎의 진세노사이드 및 페놀산 조성 변화와 생리활성에 미치는 영향)

  • Lee, Ka-Soon;Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Sun-Ick;Han, Seung-Ho;Kim, Hyun-Ho;Baik, Nam-Doo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1194-1200
    • /
    • 2010
  • This study was carried out to investigate the compositional changes of ginsenosides and phenolic acids of ginseng leaf by fermentation in order to promote the utilization of ginseng leaf. The chief ginsenosides in non-fermented ginseng leaf (NFGL) were ginsenoside-Rg1 (26.0 mg/g), -Re (47.3 mg/g) and -Rd (23.9 mg/g). By fermentation, ginsenoside-Rg1, -Rb1, -Rb2, -Rb3, -Rc and -Re were decreased tremendously and new ginsenoside-Rh2, -Rh1, -Rg2 and -Rg3 appeared. Especially, ginsenoside-Rg3 (3.7 mg/g) on FGL was increased 15-fold compared to that of NFGL (0.2 mg/g). Total phenolic compound content of NFGL and FGL measured by colorimetric analysis was 350.4 and 312.5 mg%, respectively. There were 8 free and 6 ester forms of phenolic acids in NFGL. Among them, content of ferulic acid was the highest, comprised of 12.6 and 50.7 mg%, respectively. In FGL, total content of protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid were increased by 28, 5 and 7.8 fold and ferulic acid was decreased greatly. Tyrosinase inhibitory activity of FGL was stronger than NFGL, while electron donating abilities of FGL were similar to NFGL.

Quantitative Analysis of Ginsenosides in Red Ginseng Extracted under Various Temperature and Time (홍삼의 추출 시간 및 온도에 따른 Ginsenosides 함량 비교분석)

  • Yang, Byung-Wook;Han, Sung-Tai;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.217-220
    • /
    • 2006
  • This study compared the contents of ginsenoside according to the extract conditions of red ginseng to provide basic information for developing functional food using red ginseng. According to the result, the content of crude saponin was highest in 72 hours of extraction at $82^{\circ}C$ (RG-823). The content of prosapogenin (ginsenoside $Rh_1,\;Rh_2,\;Rg_2,\;Rg_3$) was highest in 48 hours of extraction, and followed by 72 and 24 hours at $82^{\circ}C$. And at $93^{\circ}C$ the prosapogenin contents were highest in the order of 48 hours, and next in 24 and 72 hours. In addition, ginsenoside $Rb_1,\;Rb_2$ Rc and Re were not detected in 72 hours of extraction at $93^{\circ}C$ (RG-933) presumedly due to hydrolysis, but ginsenoside Rd, Rf and $Rg_1$ were detected as long as 72 hours of extraction. These results show that protopanaxatriol group is relatively more resistant to heat than protopanaxadiol group.