• Title/Summary/Keyword: G C Separation

Search Result 392, Processing Time 0.031 seconds

A Refining of Natural Diatomite and Synthesis of SiC Powder (규조토 정제 및 탄화규소 분말합성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • For high value-added applications of natural blue diatomite, the physical refining process and synthesis of SiC from refined diatomite were investigated. Approximately 30 percent Fe ($Fe_2O_3$) in raw blue diatomite was removed by a particle sieve separation process; the Fe composition for 325 mesh down powder was approximately 2 percent. Although a wet and/or dry magnetic separation process had some influence on the separation and/or refining of Fe composition, the Fe composition in the non-magnetic by-product was approximately 2 percent. Water leaching separation was effective in removing the Fe composition; approximately 40 percent of the Fe in raw blue diatomite was removed. The synthesis of ${\beta}$-SiC by a carbothermal reduction of the $SiO_2$ in the refined diatomite using carbon (graphite, carbon black), the effects of an acid-treatment on removing the Fe, and the specific surface area for the synthesized powder were also investigated. The impurities were mostly eliminated and the specific surface area was increased to $52.5m^2/g$.

Separation of Menthol/Water Mixture with Surface-Modified Hydrophobic Membrane (표면개질한 소수성 막을 이용한 menthol/water 혼합물의 분리)

  • Han, Sang-Oh;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.249-254
    • /
    • 2002
  • The surface of tube-type alumina substrate was modified with a silane coupling agent in order to modify the membrane surface with hydrophobicity. Contact angle of water drops on modified membrane was greater than $90^{\circ}$. The modified membrane was tested in pervaporation and vapor permeation for the recovery of menthol from dilute menthol/water mixture. With increasing menthol concentration in the feed at $45^{\circ}C$, permeation rate of menthol in pervaporation and vapor permeation increased from $0.039(g/m^2hr)$ to $0144(g/m^2hr)$ and from. $0.077(g/m^2hr)$ to $0.297(g/m^2hr)$ respectively. When feed concentration is 0.005(g/L) at $45^{\circ}C$, separation factor for menthol in pervaporation and vapor permeation is 20,7 and 40.5 respectively.

  • PDF

Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method (전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성)

  • Park, Minjeong;Choi, Younggyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

Pervaporation Separation of MTBE-Methanol Mixtures Using PVA/PAA Crosslinked Membranes (가교된 PVA/PAA 막을 이용한 MTBE-Methanol 혼합물에 대한 투과증발분리)

  • 임지원;김연국
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.235-242
    • /
    • 1998
  • Pervaporation separation of methyl tert-butyl ether (MTBE) and methanol (MeOH) mixture, of which the former compound is well known as the octane booster was carried out. Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid) which have been successfully applied on the water-alcohol mixtures were used in this study. The PVA/PAA ratio in the crosslinked membranes was 95/5, 90/10, 85/15, 80/20, and 75/25 by weight. The operating temperatures were 30, 40, and 50$\circ$C, and the compositions of MTBE and MeOH to be separated were 95/5, 90/10, and 80/20 (MTBE/MeOH) solutions. PVA/PAA=85/15 membrane showed the separation factor $\alpha_{MeOH/MTBE}$=4000 and the permeation rate of 10.1 g/m$^2$hr for MTBE/MeOH=80/20 solution at 50$\circ$. When the same membrane was used, the separation factor and permeation rate for MTBE/MeOH=90/10 solution at 40$\circ$C were $\alpha_{MeOH/MTBE}$=6000 and 8.5 g/m$^2$hr, respectively. Also, the hydrophilic/hydrophobic balance of the membranes would take an important role in the relationships between the membranes and separation performances in terms of the flux and the separation factor.

  • PDF

Cheese Manufacturing and Bioactive Substance Separation: Separation and Preliminary Purification of cAMP from Whey

  • Liu, Yongfeng;Zhao, Xiaowei;Liu, Manshun;Zhao, Jing
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.52-63
    • /
    • 2018
  • Cheese consumption has been gradually increased in China. However, both the manufacturing process of cheese and the utilization of its main by-product were not well developed. Based on the sensory evaluation, Box-Behnken Design (BBD) was performed in the present study to optimize the cheese processing, which was proved more suitable for Chinese. The optimal parameters were: rennet 0.052 g/L, start culture 0.025 g/L and $CaCl_2$ 0.1 g/L. The composition analysis of fresh bovine milk and whey showed that whey contained most of the soluble nutrients of milk, which indicated that whey was a potential resource of cyclic adenosine-3', 5'-monophosphate (cAMP). Thus, the cAMP was isolated from whey, the results of high-performance liquid chromatography (HPLC) analysis showed that the macroporous adsorption resins (MAR) D290 could increase the concentration of cAMP from $0.058{\mu}mol/mL$ to $0.095{\mu}mol/mL$. We firstly purified the cAMP from the whey, which could become a new source of cAMP.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook;Lee, Keun-Bok;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

  • PDF

A Study on the Synthesis of ACE/PP-g-AN Hybrid Fibers by Irradiation and Separation of Uranium (방사선 중합에 의한 ACF/PP-g-AN 복합섬유의 합성 및 우라늄 분리에 관한 연구)

  • 황택성;황대성;노영창
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.174-181
    • /
    • 2000
  • The ACF/PP-g-AN copolymers were synthesized by the irradiational grafting of acrylonitrile onto ACF/PP hybrid fabric. The synthesis of the ACF/PP-g-AN copolymer was evidenced by the band of -C=N absorption peak at 2250 $cm^{-1}$ / and amidoximation was evidenced by the band of -OH and -NH$_2$ peak at 3450 $cm^{-1}$ / on FT-IR spectrum. The optimal time for the uranium ion adsorption equilibrium on ACF/PP-g-AN copolymers was 8 days and the optimal pH was 8. The adsorption capacities of ACF/PP-g-AN copolymers increased according to the content of amidoxime and were not varied even after more than 10 times of regeneration.

  • PDF

Phase Separation of Gd-doped UO2 and Measurement of Gd Content Dissolved in Uranium Oxide (Gd-doped UO2의 상분리 및 UO2에 고용된 Gd 함량 측정)

  • 김건식;양재호;송근우;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.916-920
    • /
    • 2003
  • The change of structure and morphology in ( $U_{0.913}$G $d_{0.087}$) $O_2$ during oxidation at 475$^{\circ}C$ and heat treatment at 130$0^{\circ}C$ in air were investigated using XRD, SEM, and EPMA. The ( $U_{0.913}$G $d_{0.087}$) $O_2$ cubic phase converted to ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase by oxidation at 475$^{\circ}C$ in air. The XRD and EPMA result of the 130$0^{\circ}C$ heat treated powder revealed that ( $U_{0.913}$G $d_{0.087}$)$_3$ $O_{8}$ orthorhombic phase was separated into $U_3$ $O_{8}$ and ( $U_{0.67}$G $d_{0.33}$) $O_{2+}$x/ cubic phase. The weight variations of (U,Gd) $O_2$ with various Gd contents were measured using TGA at the same heat treated condition. The weight variation during the heat treatment of Gd dissolve (U,Gd) $O_2$ in air can be expressed in terms of phase reaction equations related with oxidation and phase separation. Based on these phase reaction, a initial content of Gd dissolved in (U,Gd) $O_2$ can be exactly calculated by measuring the weight change during the heat treatment.

Pervaporation Separation of Water/Ethanol Mixture Using PVA/PSSA-MA Ion Exchange Membranes (PVA/PSSA-MA 이온교환막을 이용한 물/에탄올 계의 투과증발분리)

  • Rhim Ji-Won;Cho Hyun-Il;Seo Moo-Young;Kim Dae-Hoon;Park In-Cheul;Nam Sang-Yong
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.235-239
    • /
    • 2006
  • This study illustrated the results of pervaporation separation using crosslinked poly(vinyl alcohol) (PVA) with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) for water-ethanol system at 25, 35, and $45^{\circ}C$. The contents of the crosslinking agents were 7, 9, and ll wt% against PVA and the feed compositions of 50, 20, 10 and 4.4% in water were investigated. Typical trends of permeability and separation factor in pervaporation were observed for both the crosslinking agents and operating temperatures. For water : ethanol = 10 : 90, and at $45^{\circ}C$, PSSA-MA 11 wt% membrane showed the permeability $58.92g/m^2{\cdot}hr$ and the separation factor 12003 respectively.

Effect of pH and Temperature on the Production of Biosurfactant by Pseudomonas aeruginosa YPJ-80 and Its Separation (Pseudomonas aeruginosa YPJ-80에 의한 생물계면활성제 생산에 미치는 pH 및 온도의 영향과 생물계면활성제의 분리)

  • 박창호;손창규;김성훈;안도균
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.511-517
    • /
    • 1998
  • Temperature and pH conditions were studied for an effective biosurfactant production by Pseudomonas aeruginosa YPJ-80. Efficient methods of biosurfactant separation were also investigated. pH-uncontrolled experiments at 35$^{\circ}C$ and an initial pH of 8 resulted in the best cell growth (3.6 g/L) and biosurfactant production (0.073 g biosurfactant/g cell). Biosurfactant separation was most efficient using solvent extraction with chloroform/methanol (2:1 vol%) followed by acidification using 1N HCl.

  • PDF