• 제목/요약/키워드: Fuzzy-robust hybrid control

검색결과 13건 처리시간 0.024초

VEHICLE DYNAMIC CONTROL ALGORITHM AND ITS IMPLEMENTATION ON CONTROL PROTOTYPING SYSTEM

  • Zhang, Y.;Yin, C.;Zhang, J.
    • International Journal of Automotive Technology
    • /
    • 제7권2호
    • /
    • pp.167-172
    • /
    • 2006
  • A design of controller for vehicle dynamic control(VDC) and its implementation on the real vehicle were introduced. The controller has been designed using a three-degrees-of-freedom(3DOF) yaw plane vehicle, and the control algorithm was implemented on the vehicle by control prototyping system dSPACE. A hybrid control algorithm, which makes full use of the advantages of robust and fuzzy control, was adopted in the control system. Field test results show that the performance of the vehicle handling dynamics with hybrid controller is improved obviously compared to that without VDC and with simple robust controller on skiddy roads(friction coefficients lower than 0.3).

Control and Operation of Hybrid Microsource System Using Advanced Fuzzy- Robust Controller

  • Hong, Won-Pyo;Ko, Hee-Sang
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.29-40
    • /
    • 2009
  • This paper proposes a modeling and controller design approach for a hybrid wind power generation system that considers a fixed wind-turbine and a dump load. Since operating conditions are kept changing, it is challenge to design a control for reliable operation of the overall system To consider variable operating conditions, Takagi-Sugeno (TS) fuzzy model is taken into account to represent time-varying system by expressing the local dynamics of a nonlinear system through sub-systems, partitioned by linguistic rules. Also, each fuzzy model has uncertainty. Thus, in this paper, a modem nonlinear control design technique, the sliding mode nonlinear control design, is utilized for robust control mechanism In the simulation study, the proposed controller is compared with a proportional-integral (PI) controller. Simulation results show that the proposed controller is more effective against disturbances caused by wind speed and load variation than the PI controller, and thus it contributes to a better quality wind-hybrid power generation system.

성능개선을 위한 룩업테이블 하이브리드 퍼지제어 시스템 (Hybrid Fuzzy Control Systems with Look-Up Table for Good Performance)

  • 이평기
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.101-108
    • /
    • 2016
  • I propose a hybrid fuzzy controller with a look-up table to improve the performance of the FARMA(Fuzzy Auto-regressive Moving Average) fuzzy controller. The hybrid structure of the proposed method is composed of a fuzzy controller with a look-up table of the PD type and the FARMA fuzzy controller. The proposed method improves poor performance due to the lack of I/O data to calculate predictive output and shows robust performance over the FARMA fuzzy controller when a incorrect Dmax value is selected by trial and error. I executed some computer simulations on the regulation problem of an inverted pendulum system and compared the results with those of the FARMA fuzzy controller.

하이브리드 자기베어링 시스템의 강인 안정도 해석 (Robust Stability Analysis of Hybrid Magnetic Bearing System)

  • 성화창;박진배;탁명환;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.372-377
    • /
    • 2011
  • 본 논문에서는 하이브리드 자기베어링 시스템의 효과적인 제어 방안 마련을 위한 기법 제안을 목표로 한다. 자기베어링 시스템에서의 제어 목적이란, 회전자(rotor)의 회전을 외부의 물리적 접촉 없이 자기장의 힘만으로 동작하도록 베어링의 위치를 최대한 센터에 위치케 하는 것이다. 기본적으로 자기베어링 시스템은 비선형적 동적방정식으로 구성되기 때문에, 제어 목적을 달성하기 위한 제어 입력 신호의 설계가 쉽지 않으며, 외부 환경의 영향에 따른 시스템 파라미터 변화율에도 많이 민감한 편이다. 본 논문에서는 자기베어링 시스템의 비선형성에 대한 해석 방안으로 퍼지 모델링을 통해 시스템을 재해석하게 되며, 제어 목적에 대한 설정은 선형행렬 부등식 기반 안정화 문제로 변환하여 제어 입력을 설계하고자 한다. 해당 퍼지 모델링 및 제어 알고리즘의 정당성은 시뮬레이션을 통해 검증된다.

강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어 (Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator)

  • 한성익
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

슬라이딩 모드 제어기와 퍼지 제어기를 이용한 하이브리드 제어기 설계 (Design of Hybrid Controller Using sliding Mode Controller and Fuzzy Controller)

  • 황광룡;권철;신현석;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.111-116
    • /
    • 1998
  • This paper proposes a robust control using a sliding mode controller and a fuzzy controller. Having the excellent transient response, the sliding mode controller has the poor steady state response, but the fuzzy controller has a good steady state reponse. A proposed controller combined these controllers has the quick response at the initial condition without the errors. The proposed robust nonlinear controller takes the advantage of the fuzzy controller and is the rapid and the stable response in conditions that the sliding mode controller keeps the errors at the steady state. The performance of proposed method is proved by simulation of the inverted pendulum.

  • PDF

로보트 매니퓰레이터의 하이브리드 제어시 발생하는 애매함의 극복 (The Solving of Ambiguity Problem on the Hybrid Control for Robot Manipulator)

  • 정상근;박종국
    • 전자공학회논문지B
    • /
    • 제29B권10호
    • /
    • pp.59-68
    • /
    • 1992
  • In this paper, we proposed coordinator description and ambiguity on the hybrid controller for position/force control of robot manipulator. When the hybrid controller is desiged based on the PID control conception, the parameter sharing problem must be considered. However, selection problem of coordinate system on n-DOF robot manipulator control is unsolved. Moreover, contact force on object and change of shape make another problems. And it is very difficult to figure out the accurate mathematical model of manipulator on account of ambiguity and nonlinearity of actuator. Therfore, we design a new hybrid controller, FPID(Fuzzy PID). For verifying the validity of the controller, we tried computer simulation of this system. As a result, we can get remarkable improvement of overdamping and overshooting. Also we can solve compicance problem effectively. Furthermore, ambiguity problem is solved by adding control knowledge based compensator. So robust controller can be acheived, too.

  • PDF

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

공정제어를 위한 퍼지 적응제어기의 설계 (The Design of a Fuzzy Adaptive Controller for the Process Control)

  • Lee Bong Kuk
    • 전자공학회논문지B
    • /
    • 제30B권7호
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어 (Speed Control for Low Speed Diesel Engine by Hybrid F-NFC)

  • 최교호;양주호
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF