• Title/Summary/Keyword: Fuzzy-neural hybrid system

Search Result 89, Processing Time 0.024 seconds

Grout Injection Control using AI Methodology (인공지능기법을 활용한 그라우트의 주입제어)

  • Lee Chung-In;Jeong Yun-Young
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.399-410
    • /
    • 2004
  • The utilization of AS(Artificial Intelligence) and Database could be considered as an useful access for the application of underground information from the point of a geotechnical methodology. Its detailed usage has been recently studied in many fields of geo-sciences. In this paper, the target of usage is on controlling the injection of grout which more scientific access is needed in the grouting that has been used a major method in many engineering application. As the proposals for this problem it is suggested the methodology consisting of a fuzzy-neural hybrid system and a database. The database was firstly constructed for parameters dynamically varied according to the conditions of rock mass during the injection of grout. And then the conceptional model for the fuzzy-neural hybrid system was investigated fer optimally finding the controlling range of the grout valve. The investigated model applied to four cases, and it is found that the controlling range of the grout valve was reasonably deduced corresponding to the mechanical phenomena occurred by the injection of grout. Consequently, the algorithm organizing the fuzzy-neural hybrid system and the database as a system can be considered as a tool for controlling the injection condition of grout.

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Path Control of a Mobile Robot Using Fuzzy-Neural Hybrid System (퍼지.신경회로망을 이용한 자율주행 로봇의 경로제어)

  • Lee, B.R.;Lee, W.K.;Yi, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.19-26
    • /
    • 1995
  • In this paper, a fuzzy-neural hybrid control approach is proposed for controlling a mobile robot that can avoid an unexpected obstacle in a navigational space. First, to describe the global structure of a known environment, a heuristic collision-free space band is introduced. Based on the band, the moving information in the known environment is trained to a neural controller. Then, during the execution of a mobile robot navigation moving information at each position is given the neural controller. If the mobile robot encounters an unexpected obstacle, a fuzzy controller activates to avoid the unexpected obstacle. Finally, some numerical examples are presented to demonstrate the control algorithm.

  • PDF

Design of Hybrid Controller Using Neural Network-Fuzzy (신경망-퍼지 하이브리드 제어기 설계)

  • 신위재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • In this paper, we proposed a hybrid neural network-fuzzy controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of loaming a inverse model neural network of Plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed speed controller get a good response compare with a neural network controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

  • PDF

Hybrid Intelligent Control for Speed Sensorless of SPMSM Drive (SPMSM 드라이브의 속도 센서리스를 위한 하이브리드 지능제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.690-696
    • /
    • 2004
  • This paper is proposed a hybrid intelligent controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neural network-fuzzy(NNF) control and speed estimation using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

A Neuro-Fuzzy Approach to Integration and Control of Industrial Processes:Part I

  • Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.58-69
    • /
    • 1998
  • This paper introduces a novel neuro-fuzzy system based on the polynomial fuzzy neural network(PFNN) architecture. The PFNN consists of a set of if-then rules with appropriate membership functions whose parameters are optimized via a hybrid genetic algorithm. A polynomial neural network is employed in the defuzzification scheme to improve output performance and to select appropriate rules. A performance criterion for model selection, based on the Group Method of DAta Handling is defined to overcome the overfitting problem in the modeling procedure. The hybrid genetic optimization method, which combines a genetic algorithm and the Simplex method, is developed to increase performance even if the length of a chromosome is reduced. A novel coding scheme is presented to describe fuzzy systems for a dynamic search rang in th GA. For a performance assessment of the PFNN inference system, three well-known problems are used for comparison with other methods. The results of these comparisons show that the PFNN inference system outperforms the other methods while it exhibits exceptional robustness characteristics.

  • PDF

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

Speed Estimation and Control of IPMSM Drive with HAI Controller (HAI 제어기에 의한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Hong-Gyun;Lee Jung-Chul;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.220-227
    • /
    • 2005
  • This paper presents hybrid artificial intelligent(HAI) controller based on the vector controlled IPMSM drive system. And it is based on artificial technologies that adaptive neural network fuzzy(A-NNF) is to speed control and artificial neural network(ANN) is to speed estimation. The salient feature of this technique is the HAI controller The hybrid action tolerates any inaccuracies in the fuzzy logic assignment rules or in the neural network stationary weights. Speed estimators using feedforward multilayer and artificial neural network(ANN) are compared. The back-propagation algorithm is easy to derived the estimated speed tracks precisely the actual motor speed. This paper presents the theoretical analysis as well as the simulation results to verify the effectiveness of the new hybrid intelligent control.