• Title/Summary/Keyword: Fuzzy-Neural network

Search Result 1,208, Processing Time 0.032 seconds

Fuzzy Neural Network-based Visual Servoing : part I (퍼지 신경망을 이용한 시각구동(I))

  • 김태원;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1010-1019
    • /
    • 1994
  • It is shown that there exists a nonlinear mapping which transforms image features and their changes to the desired camera motion without measuring of the relative distance between the camera and the object. This nonlinear mapping can eliminate several difficulties occurring in computing the inverse of the feature Jacobian as in the usual feature-based visual feedback control methods. Instead of analytically deriving the closed form of this mapping, a Fuzzy Membership Function-based Neural Network (FMFNN) incorporating a Fuzzy-Neural Interpolating Network is used to approximate the nonlinear mapping. Several FMFNN's are trained to be capable of tracking a moving object in the whole workspace along the line of sight. For an effective implementation of the proposed FMF network, an image feature selection process is investigated. Finally, several numerical examples are presented to show the validity of the proposed visual servoing method.

  • PDF

Direct Adaptive Control System for Path Tracking of Mobile Robot Based on Wavelet Fuzzy Neural Network (이동 로봇의 경로 추종을 위한 웨이블릿 퍼지 신경 회로망 기반 직접 적응 제어 시스템)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2432-2434
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

  • PDF

An Artificial Neural Network Learning Fuzzy Membership Functions for Extracting Color Sketch Features (칼라스케치 특징점 추출을 위한 퍼지 멤버쉽 함수의 신경회로망 학습)

  • Cho, Sung-Mok;Cho, Ok-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.11-20
    • /
    • 2006
  • This paper describes the technique which utilizes a fuzzy neural network to sketch feature extraction in digital images. We configure an artificial neural network and make it learn fuzzy membership functions to decide a local threshold applying to sketch feature extraction. To do this. we put the learning data which is membership functions generated based on optimal feature map of a few standard images into the artificial neural network. The proposed technique extracts sketch features in an images very effectively and rapidly because the input fuzzy variable have some desirable characteristics for feature extraction such as dependency of local intensity and excellent performance and the proposed fuzzy neural network is learned from their membership functions, We show that the fuzzy neural network has a good performance in extracting sketch features without human intervention.

  • PDF

Neural-Fuzzy Controller Based on Reinforcement Learning (강화 학습에 기반한 뉴럴-퍼지 제어기)

  • 박영철;김대수;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.245-248
    • /
    • 2000
  • In this paper we improve the performance of autonomous mobile robot by induction of reinforcement learning concept. Generally, the system used in this paper is divided into two part. Namely, one is neural-fuzzy and the other is dynamic recurrent neural networks. Neural-fuzzy determines the next action of robot. Also, the neural-fuzzy is determined to optimal action internal reinforcement from dynamic recurrent neural network. Dynamic recurrent neural network evaluated to determine action of neural-fuzzy by external reinforcement signal from environment, Besides, dynamic recurrent neural network weight determined to internal reinforcement signal value is evolved by genetic algorithms. The architecture of propose system is applied to the computer simulations on controlling autonomous mobile robot.

  • PDF

Fuzzy-Neuro Controller for Speed of Slip Energy Recovery and Active Power Filter Compensator

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.480-480
    • /
    • 2000
  • In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.

  • PDF

The wavelet neural network using fuzzy concept for the nonlinear function learning approximation (비선형 함수 학습 근사화를 위한 퍼지 개념을 이용한 웨이브렛 신경망)

  • Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.397-404
    • /
    • 2002
  • In this paper, it is proposed wavelet neural network using the fuzzy concept with the fuzzy and the multi-resolution analysis(MRA) of wavelet transform. Also, it wishes to improve any nonlinear function learning approximation using this system. Here, the fuzzy concept is used the bell type fuzzy membership function. And the composition of wavelet has a unit size. It is used the backpropagation algorithm for learning of wavelet neural network using the fuzzy concept. It is used the multi-resolution analysis of wavelet transform, the bell type fuzzy membership function and the backpropagation algorithm for learning. This structure is confirmed to be improved approximation performance than the conventional algorithms from one dimension and two dimensions function through simulation.

Optimal Structure Design of Modular Neural Network (모듈라 신경망의 최적구조 설계)

  • Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • Recently, the modular network was proposed in a way to keep the size of the neural network small. The modular network solves the problem by splitting it into sub-problems. In this aspect, fuzzy systems act in a similar way. However, in a fuzzy system, there must be an expert rule which separates the input space. To overcome this, fuzzy-neural network has been used. However, the number of fuzzy rules grows exponentially as the number of input variables grow. In this paper, we would like to solve the size problem of neural networks using modular network with the hierarchic structure. In the hierarchic structure, the output of precedent module affects only the THEN part of the rule. Finally, the rules become shorter being compared to the rule of fuzzy-neural system. Also, the relations between input and output could be understood more easily in the Proposed modular network and that makes design easier.

Design of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계)

  • 이상윤;한성현;신위재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.463-468
    • /
    • 2002
  • In this paper, we proposed a recurrent time delayed neural network controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network controller.

  • PDF

A Study on Mating Chamferless Parts by Integrating Fuzzy Set Tyeory and Neural Network (퍼지 및 신경회로망을 이용한 면취가 없는 부품의 자동결합작업에 관한 연구)

  • 박용길;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 1994
  • This paper presents an intelligent robotic control method for chamferless parts mating by integrating fuzzy control and neural network. The successful assembly task requires an extremely high position accuracy and a good knowledge of mating parts. However, conventional assembly method alone makes it difficult to achieve satisfactory assembly performance because of the complexity and the uncertainties of the process and its environments such as not only the limitation of the devices performing the assembly but also imperfect knowledge of the parts being assembled. To cope with these problems, an intelligent robotic assembly method is proposed, which is composed of fuzzy controller and learning mechanism based upon neural net. In this method, fuzzy controller copes with the complexity and the uncertainties of the assembly process, while neural network enhances the assembly scheme so as to learn fuzzy rules from experience and adapt to changes in environment of uncertainty and imprecision. The performance of the proposed assembly scheme is evaluted through a series of experiments using SCARA robot. The results show that the proposed control method can be effectively applied to chamferless precision parts mating.

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF