• Title/Summary/Keyword: Fuzzy speed controller

Search Result 560, Processing Time 0.033 seconds

Design of a Fuzzy PI Controller for the Speed Control of BLDC Motor (BLDC 모터의 속도 제어를 위한 퍼지 PI 제어기 설계)

  • Song, Seung-Joon;Kim, Yong;Lee, Seung-Il;Lee, Eun-Young;Kim, Pill-Soo;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1147-1150
    • /
    • 2001
  • This paper represents a realization of a fuzzy PI control method for a speed control of BLDC motor. In other words, the gains of the PI controller is tuned by a fuzzy logic controller. Simplified reasoning methods are used for fuzzy reasoning. Fuzzy logic speed controller is designed by using the high performance of DSPchip(TMS320F240). By experiment, it is confirmed that the speed of BLDC motor well follows an command speed in the load variables or speed variables.

  • PDF

An Adaptive Fuzzy Based Control applied to a Permanent Magnet Synchronous Motor under Parameter and Load Variations (ICCAS 2004)

  • Kwon, Chung-Jin;Kim, Sung-Joong;Won, Kyoung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1168-1172
    • /
    • 2004
  • This paper presents a speed controller based on an adaptive fuzzy algorithm for high performance permanent magnet synchronous motor (PMSM) drives under parameter and load variations. In many speed tracking control systems PI controller has been used due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, the PI controller parameters are modified during operation by adaptive fuzzy method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller (퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF

Novel Wavelet-Fuzzy Based Indirect Field Oriented Control of Induction Motor Drives

  • Febin Daya, J.L.;Subbiah, V.;Atif, Iqbal;Sanjeevikumar, Padmanaban
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.656-668
    • /
    • 2013
  • This paper presents a wavelet-fuzzy based controller for indirect field oriented control of three-phase induction motor drives. The discrete wavelet transform is used to decompose the error between the actual speed and the command speed of the induction motor drive into different frequency components. The transformed error coefficients along with the scaling gains are used for generating the control component of the motor. Self-tuning fuzzy logic is used for online tuning of the scaling gains of the controller. The proposed controller has the ability to meet the speed tracking requirements in the closed loop system. The complete indirect field oriented control scheme incorporating the proposed wavelet-fuzzy based controller is investigated theoretically and simulated under various dynamic operating conditions. The simulation results are compared with a conventional proportional integral controller and a fuzzy based controller. The speed control scheme incorporating the proposed controller is implemented in real time using a digital processor control board. Simulation and experimental results validate the effectiveness of the proposed controller.

Robust Speed Control of a Permanent Magnet Synchronous Motor using a Fuzzy Logic Controller (퍼지제어기를 이용한 영구자석 동기전동기의 강인한 속도제어)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.343-351
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor (PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the gains of the controller are provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter variations. Finally, it is clearly verified that the proposed control method can accurately control the speed of a permanent magnet synchronous motor.

Speed Control of BLDC Motor Drive Using an Adaptive Fuzzy P+ID Controller (적응 퍼지 P+ID 제어기를 이용한 BLDC 전동기의 속도제어)

  • Kwon, Chung-Jin;Han, Woo-Yang;Sin, Dong-Yang;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1172-1174
    • /
    • 2002
  • An adaptive fuzzy P + ID controller for variable speed operation of BLDC motor drives is presented in this paper. Generally, a conventional PID controller is most widely used in industry due to its simple control structure and ease of design. However, the PID controller suffers from the electrical machine parameter variations and disturbances. To improve the tracking performance for parameter and load variations, the controller proposed in this paper is constructed by using an adaptive fuzzy logic controller in place of the proportional term in a conventional PID controller. For implementing this controller, only one additional parameter has to be adjusted in comparison with the PID controller. An adaptive fuzzy controller applied to proportional term to achieve robustness against parameter variations has simple structure and computational simplicity. The controller based on optimal fuzzy logic controller has an self-tuning characteristics with clustering. Computer simulation results show the usefulness of the proposed controller.

  • PDF

The Characteristic of Control Response of BLDC using a Fuzzy PI Controller (퍼지 PI 제어기를 사용한 BLDC 제어 응답특성)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Kim, Duk-Heon;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1978-1983
    • /
    • 2011
  • BLDC motor is used in a wide variety of industrial and servo applications. Its features and advantages mainly consist in high value of torque/inertia ratio, high efficiency with speed range and high dynamic performance. This paper deals with the speed control of a trapezoidal type brushless DC motor using Fuzzy PI controller. The conventional PI controller has been widely used in industrial applications. If we select a optimal PI control gain, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant and is basically adaptive and gives robust performance for plant parameter variation. Therefore the combinations of conventional PI controller and fuzzy controller seem to be very effective. This paper deals with PI controller with 4-rule based fuzzy controller. The proposed fuzzy PI controller increases the control performance of the conventional PI controller. Simulation and experimental results show that fuzzy PI controller has a good robustness regarding the improper tuned PI controller.

Implementation of Cruise Control System using Fuzzy Logic Controller (퍼지 로직 컨트롤러를 이용한 차량 정속 주행 시스템의 구현)

  • Kim, Young-Min;Lee, Joo-Phil;Chong, Hyung-Hwan;Yim, Young-Doe;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.491-494
    • /
    • 1997
  • In this paper, we suppose a fuzzy logic controller for cruise control of vehicle. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. The proposed fuzzy logic controller consists of three input variables; that is, a desired speed, a current vehicle speed, and a current acceleration, and one output variable, throttle angle. The supposed fuzzy logic controller is for engine speed control system is implemented on 80586 microprocessor with DT-2801.

  • PDF

An Adaptive Fuzzy Tuning Method for the Speed Control for BLDG Motor Drive (BLDC 전동기의 속도 제어를 위한 적응 퍼지 기법)

  • Kwon, Chung-Jin;Han, Woo-Yong;Kim, Sung-Joong;Lee, Chang-Goo;Lim, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1142-1144
    • /
    • 2003
  • This Paper presents a speed controller based on the adaptive fuzzy tuning method for brushless DC(BLDC) motor drives under load variations. Generally, the speed tracking control systems use PI controller due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, PI controller of which the parameters are modified during operation by adaptive fuzzy tuning method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

A Study on the Speed Control of Switched Reluctance Motor Using (퍼지-뉴럴 제어기를 이용한 스위치드 리럭턴스 전동기의 속도 제어에 관한 연구)

  • 박지호;김건우;김연충;원충연;김창림;최경호
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.1-4
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of switched reluctance motor. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM. The results show that fuzzy-neural controller is suitable for wide speed range.

  • PDF