• 제목/요약/키워드: Fuzzy sensor algorithm

검색결과 202건 처리시간 0.035초

A Study on 3D RTLS at Port Container Yards Using the Extended Kalman Filter

  • Kim, Joeng-Hoon;Lee, Hyun-Woo;Kwon, Soon-Ryang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.228-235
    • /
    • 2007
  • The main purpose of this paper is to manage the container property effectively at the container yard by applying the RTLS technology to the field of port logistics. Yet, many kinds of noises happen to be inputted with the distance value(between the reader and the tag) which is to be inputted into the location identification algorithm, which makes the distance value jumped due to the system noise of the ultrasonic sensor module and the measurement noise. The Kalman Filter is widely used to prevent this jump occurrence; the noises are eliminated by using the EKF(Extended Kalman Filter) while considering that the distance information of the ultrasonic sensor is non-linear. Also, the 3D RTLS system at the port container yard suggested in this research is designed not to be interrupted for its ultrasonic transmission by positioning the antenna at the front of each sector of the container where the active tags are installed. We positioned the readers, which function as antennas for location identification, to four places randomly in the absolute coordinate and let the positions of the active tags identified by using the distance data delivered from the active tags. For the location identification algorithm used in this paper, the triangulation measurement that is most used in general is applied and newly reorganized to calculate the position of the container. In the first experiment, we dealt with the error resulting in the angle and the distance of the ultrasonic sensor module, which is the most important in the hardware performance; in the second, we evaluated the performance of the location identification algorithm, which is the most important in the software performance, and tested the noise cancellation effects for the EKF. According to the experiment result, the ultrasonic sensor showed an average of 3 to 5cm error up to $45^{\circ}$ in case of $60^{\circ}$ or more, non-reliable linear distances were obtained. In addition, the evaluation of the algorithm performance showed an average of $4^{\circ}{\sim}5^{\circ}$ error due to the error of the linear distance-this error is negligible for most container location identifications. Lastly, the experiment results of noise cancellation and jump preservation by using the EKF showed that noises were removed in the distance information which was entered from the input of the ultrasonic sensor and as a result, only signal was extracted; thus, jumps were able to be removed and the exact distance information between the ultrasonic sensors could be obtained.

진동패턴 알고리즘을 적용한 조이스틱의 햅틱 구현 (Haptic Joystick Implementation using Vibration Pattern Algorithm)

  • 노경욱;이동혁;한종호;박숙희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.605-613
    • /
    • 2013
  • This research proposes a vibration pattern algorithm to implement the haptic joystick to control a mobile robot at the remote site without watching the navigation environment. When the user cannot watch the navigation environment of the mobile robot, the user may rely on the haptic joystick solely to avoid obstacles and to guide the mobile robot to the target. To generate vibration patterns, there is a vibration motor at the bottom of the joystick which is held by the user to control the motion direction of the mobile robot remotely. When the mobile robot approaches to an obstacle, a pattern of vibration is generated by the motor, and by feeling the vibration pattern which is determined by the relative position of the mobile robot to the obstacle, the user can move the joystick to avoid the collision to the obstacle for the mobile robot. To generate the vibration patterns to convey the relative location of the obstacle near the mobile robot to the user, Fuzzy interferences have been utilized. To measure the distance and location of the obstacle near the mobile robot, ultrasonic sensors with the ring structure have been adopted and they are attached at the front and back sides of the mobile robot. The precise location of the obstacle is obtained by fusing the multiple data from ultrasonic sensors. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

VEGA 기반 FBFE을 이용한 표적 추적 시스템 설계 (The Design of Target Tracking System Using FBFE Based on VEGA)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.359-365
    • /
    • 2001
  • 본 논문에서는 바이러스-진화 유전 알고리즘에 기반한 퍼지 기저 함수 확장을 이용한 표적 추적 시스템의 설계 방법을 제안한다. 일반적으로 표적 추적의 목적은 센서로부터 얻어진 표적의 과거 위치에 기반하여, 미래에 대한 표적의 궤적을 추정하는 것이다. 확장 칼만 필터와 같은 전통적이고 수학적인 비선형 필터링 기법에서 강한 비선형성은 시스템의 성능을 저하시킬 수 있다. 이러한 비선형 필터링 기법의 장점을 결합한다. 제안된 방법에서, 확장 칼만 필터의 파라미터로 학습 데이터를 구성하고, 강한 근사화 능력을 가지는 퍼지 기저 함수에 유전 알고리즘의 유전적 다양성 상실로 이한 조기 수렴을 방지하는 바이러스-진화 유전 알고리즘을 결합하여, 파라미터와 규칙 수를 동시에 동정시킴으로써 확장 칼만 필터의 오차를 보정한다. 마지막으로, 제안된 방법은 3차원 상의 모의 실험을 통해 그 성능이 입증된다.

  • PDF

필드로봇을 위한 힘방향 조이스틱 개발 (Development of Force Reflecting Joystick for Feild Robot)

  • 송인성;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 1997
  • Abstract: In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system IS hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the excavation performance of a hydraulically actuated robotic system and it is very difficult to determine it appropriately since slave excavator contacts with various environments such as from soft soil to rock. To overcome this, this paper proposes a force-reflection gain selecting algorithm based on artificial neural network and fuzzy logic.

  • PDF

효율적인 공기압축기 운영을 위한 이상진단모델 연구 (Development of Diagnosis of Trouble Model for Effective Operation of Air-compressor)

  • 임상돈;정영득;김종래
    • 대한안전경영과학회지
    • /
    • 제16권3호
    • /
    • pp.239-248
    • /
    • 2014
  • Most systems used in industrial sites, actually have non-linearity and uncertainty. Therefore there are a lot of difficulties in evaluating conditions of these systems. Generally, the quantitative analysis and expression are found hard because the general public cannot easily make an accurate interpretation on the systems. Thus development of a system that utilizes an expertise from skilled analysts is required. In this research, a real-time sensor signal conditioning system and Fuzzy-expert system have been separately set up into an inference algorithm. So that it ensures a fast, accurate, objective and quantitative operational condition value provided to the manager. Therefore, FE_AFCDM is suggested in this literature, as an effective system for diagnosing the problems related to the air compressor. It can quantify the uncertain and absurd condition to operate the air compressor facilities safely and financially.

VEGA 기반 FBFE를 이용한 표적 추적 시스템 설계 (The Design of Target Tracking System Using FBFE based on VEGA)

  • 이범직;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.126-130
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권2호
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계 (Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures)

  • 윤정방;김상범
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.63-74
    • /
    • 1999
  • 대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2$\infty$ }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.

  • PDF

접촉력에 따라 변하는 Tactile 영상의 퍼지 융합을 통한 인식기법 (Recognition of Tactilie Image Dependent on Imposed Force Using Fuzzy Fusion Algorithm)

  • 고동환;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.95-103
    • /
    • 1998
  • 접촉센서가 제공하는 tactile영상을 이용하여 접촉면의 형태를 인식할 때 영상의 모양은 접촉면에 가해지는 힘의 크기에 따라 변화된다. 따라서 많은 노력에도 부루하고 tactile 센서만을 이용하여 접촉면의 형태를 완전히 인식하는 것은 매우 어려운 일로 인식되고 있다. 본 논문에서는 이러한 문제를 해결하기 위해 tactile 영상이 얻어지는 때의 힘을 동시에 측정하고 힘에 따라 변화하는 영상의 모양을 퍼지융합 알고리즘을 이용하여 인식하는 방법을 제안한다. 접촉센서의 tactile 영상은 eigen vector해석 방벅을 적용하여 장축과 단축의 길이로 표현된다. 이들은 접촉 시에 가해지는 힘의 분포에 따른 경계선의 변호를 측정하여 만들어진 소속함수에 의해 퍼지화되며 Averaged Minkowski's distance를 이용하여 융합된다. 제안된 알고리즘은 다중센서시스템에 구현하여 실험하였으며 측정 시에 가해지는 힘의 크기 및 측정면의 종류에 고르게 86% 이상의 인식률을 보여 주었다. 제안된 알고리즘은 복수개의 손가락을 갖는 로봇의 손에 구현하면 작은 힘에도 변형되는 물체의 정밀한 조자이나 인식에 응용될 수 있다.

  • PDF