• Title/Summary/Keyword: Fuzzy search method

Search Result 167, Processing Time 0.021 seconds

A New Approach of BK products of Fuzzy Relations for Obstacle Avoidance of Autonomous Underwater Vehicles

  • Bui, Le-Diem;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • This paper proposes a new heuristic search technique for obstacle avoidance of autonomous underwater vehicles equipped with a looking ahead obstacle avoidance sonar. We suggest the fuzzy relation between the sonar sections and the properties of real world environment. Bandler and Kohout's fuzzy relational method are used as the mathematical implementation for the analysis and synthesis of relations between the partitioned sections of sonar over the real-world environmental properties. The direction of the section with optimal characteristics would be selected as the successive heading of AUVs for obstacle avoidance. For the technique using in this paper, sonar range must be partitioned into multi equal sections; membership functions of the properties and the corresponding fuzzy rule bases are estimated heuristically. With the two properties Safety, Remoteness and sonar range partitioned in seven sections, this study gives the good result that enables AUVs to navigate through obstacles in the optimal way to goal.

Locality-Sensitive Hashing for Data with Categorical and Numerical Attributes Using Dual Hashing

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Locality-sensitive hashing techniques have been developed to efficiently handle nearest neighbor searches and similar pair identification problems for large volumes of high-dimensional data. This study proposes a locality-sensitive hashing method that can be applied to nearest neighbor search problems for data sets containing both numerical and categorical attributes. The proposed method makes use of dual hashing functions, where one function is dedicated to numerical attributes and the other to categorical attributes. The method consists of creating indexing structures for each of the dual hashing functions, gathering and combining the candidates sets, and thoroughly examining them to determine the nearest ones. The proposed method is examined for a few synthetic data sets, and results show that it improves performance in cases of large amounts of data with both numerical and categorical attributes.

Tuning of Fuzzy Logic Current Controller for HVDC Using Genetic Algorithm (유전알고리즘을 사용한 HVDC용 퍼지 제어기의 설계)

  • Jong-Bo Ahn;Gi-Hyun Hwang;June Ho Park
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.1
    • /
    • pp.36-43
    • /
    • 2003
  • This paper presents an optimal tuning method for Fuzzy Logic Controller (FLC) of current controller for HVDC using Genetic Algorithm(GA). GA is probabilistic search method based on genetics and evolution theory. The scaling factors of FLC are tuned by using real-time GA. The proposed tuning method is applied to the scaled-down HVDC simulator at Korea Electrotechnology Research Institute(KERI). Experimental result shows that disturbances are well-damped and the dynamic performances of FLC have the better responses than those of PI controller for small and large disturbances such as ULTC tap change, reference DC current change and DC ground fault.

Temporal Search Algorithm for Multiple-Pedestrian Tracking

  • Yu, Hye-Yeon;Kim, Young-Nam;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2310-2325
    • /
    • 2016
  • In this paper, we provide a trajectory-generation algorithm that can identify pedestrians in real time. Typically, the contours for the extraction of pedestrians from the foreground of images are not clear due to factors including brightness and shade; furthermore, pedestrians move in different directions and interact with each other. These issues mean that the identification of pedestrians and the generation of trajectories are somewhat difficult. We propose a new method for trajectory generation regarding multiple pedestrians. The first stage of the method distinguishes between those pedestrian-blob situations that need to be merged and those that require splitting, followed by the use of trained decision trees to separate the pedestrians. The second stage generates the trajectories of each pedestrian by using the point-correspondence method; however, we introduce a new point-correspondence algorithm for which the A* search method has been modified. By using fuzzy membership functions, a heuristic evaluation of the correspondence between the blobs was also conducted. The proposed method was implemented and tested with the PETS 2009 dataset to show an effective multiple-pedestrian-tracking capability in a pedestrian-interaction environment.

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

A Path Planning of a Mobile Robot Using the Ultrasonic Sensor and Fuzzy Logic (초음파 센서와 퍼지로직을 이용한 이동로봇의 경로계획)

  • Park, Chang-Soo;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.627-629
    • /
    • 1999
  • The research fields of mobile robot consist of three parts. The first is path planning, the second is the application of new sensors, and the last is a combination of the communication technology and mobile robot. In this paper we treat the path-planning. We use a Bayesian probability map, Distance Transform and Fuzzy logic for a path-planning. DT and Fuzzy logic algorithms search for path in entire, continuous free space and unifies global path planning and local path planning. It is efficient and effective method when compared with navigators using traditional approaches.

  • PDF

Blind linear/nonlinear equalization for heavy noise-corrupted channels

  • Han, Soo- Whan;Park, Sung-Dae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2009
  • In this paper, blind equalization using a modified Fuzzy C-Means algorithm with Gaussian Weights (MFCM_GW) is attempted to the heavy noise-corrupted channels. The proposed algorithm can deal with both of linear and nonlinear channels, because it searches for the optimal channel output states of a channel instead of estimating the channel parameters in a direct manner. In contrast to the common Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in its search procedure. The selected channel states by MFCM_GW are always close to the optimal set of a channel even the additive white Gaussian noise (AWGN) is heavily corrupted in it. Simulation studies demonstrate that the performance of the proposed method is relatively superior to existing genetic algorithm (GA) and conventional FCM based methods in terms of accuracy and speed.

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

Fuzzy Modeling Using Virus-Evolutionary Genetic Algorithm (바이러스-진화 유전 알고리즘을 이용한 퍼지 모델링)

  • 이승준;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.432-441
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain nonlinear systems, in which conventional and mathematical models may fail to give satisfactory results. Genetic algorithm has been used to identifY parameters and structure of fuzzy model because it has the ability to search optimal solution somewhat globally. The genetic algorithm, however, has a problem, which optimization process can be premature convergence in the case of lack of genetic divergence of population. Virus- evolutionary genetic algorithm(VEGA) could be a strategy against this local convergence. Therefore, we use VEGA for fuzzy modeling. In this method, local information is exchanged in population so that population can sustain genetic divergence. finally, to prove the theoretical hypothesis, we provide numerical examples to evaluate the feasibility and generality of fuzzy modeling using VEGA.

  • PDF