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Abstract 
 

In this paper, we provide a trajectory-generation algorithm that can identify pedestrians in real 
time. Typically, the contours for the extraction of pedestrians from the foreground of images 
are not clear due to factors including brightness and shade; furthermore, pedestrians move in 
different directions and interact with each other. These issues mean that the identification of 
pedestrians and the generation of trajectories are somewhat difficult. We propose a new 
method for trajectory generation regarding multiple pedestrians. The first stage of the method 
distinguishes between those pedestrian-blob situations that need to be merged and those that 
require splitting, followed by the use of trained decision trees to separate the pedestrians. The 
second stage generates the trajectories of each pedestrian by using the point-correspondence 
method; however, we introduce a new point-correspondence algorithm for which the A* 
search method has been modified. By using fuzzy membership functions, a heuristic 
evaluation of the correspondence between the blobs was also conducted. The proposed method 
was implemented and tested with the PETS 2009 dataset to show an effective 
multiple-pedestrian-tracking capability in a pedestrian-interaction environment. 
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1. Introduction 

For a long period of time, tracking has been an important theme in terms of computer vision, 
and it remains a challenging task. Computer-vision tracking involves the detection of the 
moving regions of images, the separation of foreground pedestrians from the background, and 
movement prediction. The tracking of a pedestrian is straightforward, as the pedestrian can 
easily be found in each frame, and the elapsed time can be used to determine the trajectory of 
the detected pedestrian; however, the generation of the trajectories of multiple tracked 
pedestrians is more complicated. During the tracking of multiple pedestrians, it is possible to 
mistakenly identify one of the other pedestrians as the target pedestrian, or to miss the 
detection of a pedestrian due to inter-pedestrian interactions such as occlusions. 

Multi-object tracking is generally divided into the following three categories [1]: (1) Point 
tracking represents an object as a point and associates each point of a frame with a point in 
another frame. (2) Kernel tracking uses template- and density-based appearance models to 
track an object based on its shape and appearance. (3) Silhouette tracking extracts the contours 
of objects and tracks objects by matching silhouette shapes.  

The point-tracking method involves the expression of the tracking target into a point, 
whereby the attribute of the target is extracted and attached to each point. This method requires 
a motion-correspondence problem, and in terms of classification, comprises statistical 
methods and heuristic methods. Multi Hypothesis Tracking (MHT) and Joint Probabilistic 
Data Association Filters (JPDAF) are examples of the statistical methods, and while they solve 
the interaction problem by finding jointly optimized trajectories, these methods can suffer 
from a combinatorial hypothesis space. Although global optimization can track a complete 
sequence, it is limited to a variety of assumptions in terms of an experiment. Globally, it is 
difficult to achieve success with optimum tracking because the combinatorial assignment 
problem is NP-complete. We propose a method that  finds locally optimal trajectories using a 
heuristic function, which can be computed using  consecutive 3 frames, i.e. (𝑡𝑡)th frame, 
(𝑡𝑡 − 1)th frame and (𝑡𝑡 − 2)th frame.  Even though this method does not guarantee to find 
globally optimal trajectories, it can be used for tracking pedestrians in real time by reducing 
search time. Further, while the local-tracking method that is used in the Kalman filter has a 
high accuracy regarding precision and localization, it needs to be modified to detect objects, 
despite the interactions between the objects, and so that the objects can be corresponded across 
frames for multi-object tracking [2].  

The point-tracking method [1][3] requires an external mechanism to detect all of the 
pedestrians in every image frame. The tracking problem then requires an association of the 
detected blobs in the current frame with the tracked pedestrians of previous frames [4]. Our 
proposed earlier work presents a method for the generation of the trajectories of multiple 
pedestrians through the use of the motion-correspondence method [5], whereby each 
pedestrian is represented as a point. The experiment result of this earlier work shows an 
excellent trajectory-generation capability regarding detected positions in situations of added 
Gaussian noise; however, in a real-life tracking system, a pedestrian can sometimes appear as 
blob pieces due to detection-phase errors. Alternatively, several pedestrians can be detected as 
a merged blob due to their interactions with other pedestrians such as walking close together or 
crossing paths. It is therefore necessary to segment merged blobs that contain more than two 
pedestrians, and to also group separated pedestrian blobs. According to a recent method [8], 
the detected neighboring blobs can be represented as a graph, and the shortest-path algorithm 
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can be applied to the group blobs. The processed blobs are associated with the tracked 
pedestrians of previous frames; however, their work only allows for cases of merged blobs, 
whereby either a many-to-one or a one-to-many correspondence must occur between the blobs. 
A multi-objective path finding problem was the research that has been resolved by combines 
artificial immune system (AIS), chaos operator, and particle swarm optimization (PSO) [6]. 
The non-deterministic polynomial-time hard combinatorial optimization problem was solved 
by a research of the fitness-scaling adaptive genetic algorithm with local search [7]. 

In this paper, we propose a multi-pedestrian tracking system that assigns a blob to each 
pedestrian. For the first stage of our method, we detect the pedestrian blobs in each frame of 
the images. The detected blobs are then applied to decision trees that identify whether the 
blobs are to be merged or split, whereby the blobs are assigned to either a merged-blob 
decision tree or a split-blob decision tree. The merging and splitting processes regarding the 
identified blobs occurs next, and each blob is then assigned to a pedestrian. During the second 
stage, for each blob in the current frame, the A* algorithm is used to search for the 
corresponding blob in the previous frame. Fuzzy clustering is used to develop a heuristic 
function for the evaluation of the possibility of blob association, whereby membership is 
computed from the velocities of the blobs that are under a smooth-motion constraint.  

The rest of this paper is organized as follows: section 2 describes the proposed system; 
section 3 explains the results of the experiment regarding the algorithm, including a 
performance analysis; and lastly, section 4 comprises the conclusion of the paper, as well as a 
discussion of future works. 

2. Proposed Method 
The block diagram of the proposed method is shown in Fig. 1. We separated the foreground 
from the background by using a Gaussian mixture model whereby the separated foreground 
consists of blobs. Each pedestrian blob is represented by features such as area, perimeter, 
aspect ratio, center of mass, average color, and the distance to the closest blob in the previous 
frame; based on training-set learning, these features are used for the construction of the 
decision trees. The resultant learned decision trees are used to classify the blobs as either “split” 
or “merged,” and the splitting and merging processes assign blobs to each pedestrian. 

 
Fig. 1. Block diagram of the proposed method 
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To associate a blob in the current frame with a tracked pedestrian from a previous frame, we 

devised a modified A* heuristic search algorithm. For each blob, the search for the 
most-probable pedestrian from the previous frame is based on the Euclidean distance and the 
difference between the velocity angles of the blob and the pedestrian. The required heuristic 
function that computes the possibility that a tracked pedestrian corresponds with a blob was 
designed using a fuzzy-C-means (FCM) clustering algorithm. It is the association of the blobs 
with the pedestrians over the entire frame sequence that produces the trajectories, each of 
which is a trajectory for a single pedestrian. 
 

2.1 Merging and splitting of blobs using Decision Trees 
In images, the number of detected blobs is different from the number of pedestrians. During 
this stage, the multiple detected blobs of a pedestrian should be merged into one blob, and a 
single blob that consists of two pedestrians should be divided into two blobs; the decision trees 
are used for the performances of these merging and splitting processes. A decision-tree-based 
classification method was selected, since the process is relatively easy to understand and the 
effective features of the tree-structure-derived logical expression are easy to modify.  

 The first decision tree Merge tree 𝑇𝑇𝑀𝑀 decides whether or not it will merge two adjacent 
blobs, whereas the second tree Split tree 𝑇𝑇𝑆𝑆 decides whether it will split a blob or not; these 
decision trees are generated from an ID3 learning algorithm. A set of blob pairs 𝐵𝐵𝑀𝑀 = {<
𝑏𝑏11,𝑏𝑏12 >, … , < 𝑏𝑏𝑛𝑛1,𝑏𝑏𝑛𝑛2 >} is collected as a training set of 𝑇𝑇𝑀𝑀, and each pair is labeled as 
either a positive sample or a negative sample. For each pair < 𝑏𝑏𝑖𝑖1, 𝑏𝑏𝑖𝑖2 >, the geometric 
features 𝑓𝑓𝑀𝑀 = {𝑓𝑓𝑀𝑀1,𝑓𝑓𝑀𝑀𝑛𝑛}  are extracted and used as blob-pair descriptors, and it is these 
features that are used for the construction of 𝑇𝑇𝑀𝑀. A set of blobs 𝐵𝐵𝑠𝑠 = {𝑏𝑏1, … , 𝑏𝑏𝑚𝑚} is collected 
as a training set of 𝑇𝑇𝑆𝑆. Each blob is labeled as either a positive sample or a negative sample. 
For each blob, the geometric features 𝑓𝑓𝑠𝑠 = {𝑓𝑓𝑠𝑠1,𝑓𝑓𝑠𝑠𝑚𝑚} are extracted to describe the blob and 
they serve as the features for 𝑇𝑇𝑆𝑆.  
 The ID3 decision tree is an information-theoretical algorithm invented by Ross Quinlan 
[10]. Each iteration of the ID3 involves the attainment of the largest information gain (or 
smallest entropy value), and a probability of 𝑝𝑝 is determined from the occurrence frequency. 
The entropy of a given 𝐵𝐵𝑀𝑀 is computed as follows: 
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where C is a set of classes in 𝐵𝐵𝑀𝑀 that is either of a positive (merging) class or a negative 
(not-merging) class, and p(𝐶𝐶𝑖𝑖) is the proportion of the number of pairs labeled as class 𝐶𝐶𝑖𝑖 in 
𝐵𝐵𝑀𝑀 to |𝐵𝐵𝑀𝑀|. The information gain(IG) from the partitioning of 𝐵𝐵𝑀𝑀 according to the value of 
the feature 𝑓𝑓𝑀𝑀 is computed using eq. (2), as follows: 
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In eq (2), 𝐸𝐸(𝐵𝐵𝑣𝑣𝑗𝑗

𝑀𝑀) is the entropy of the subset 𝐵𝐵𝑣𝑣𝑗𝑗
𝑀𝑀 that is constructed through the collection of 

pairs, each of which has a value of 𝑣𝑣𝑗𝑗 for the feature 𝑓𝑓𝑀𝑀𝑖𝑖, from 𝐵𝐵𝑀𝑀. 𝑉𝑉𝑀𝑀𝑖𝑖 denotes a set of values 
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for 𝑓𝑓𝑀𝑀𝑖𝑖 ; therefore, 𝐵𝐵𝑀𝑀 = ⋃ 𝐵𝐵𝑣𝑣𝑗𝑗
𝑀𝑀

𝑣𝑣𝑗𝑗∈𝑀𝑀𝑖𝑖 . The probability 𝑝𝑝(𝑣𝑣𝑗𝑗) is computed using eq. (3), as 
follows: 
 

 
||

||
)( M

M
v

j B

B
vp j=  (3) 

   
At each iteration of the construction of a decision tree, the feature that provides the 

maximum information gain is selected as a decision node. To deal with the numeric features, 
the C4.5 [11] ID3 algorithm is used.  

The pair of blobs selected by 𝑇𝑇𝑀𝑀 are merged, and the blob selected by 𝑇𝑇𝑆𝑆 is split into two 
decision trees, whereby the merging and splitting processes are respectively used. A blob is 
split vertically in consideration of the shape of the person. After the blob-processing stage, 
each blob 𝐵𝐵𝑖𝑖 is represented as < 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 >, as these are the coordinates of the center of mass.  
 

2.2 Blob association 
2.2.1 Heuristic-function evaluation  
After the blobs have been processed, an A* search algorithm is used to associate the blobs in 
(𝑡𝑡 − 1)th frame 𝐵𝐵𝑡𝑡−1 = {𝐵𝐵1𝑡𝑡−1, … ,𝐵𝐵𝑛𝑛𝑡𝑡−1} with the blobs in (𝑡𝑡)th frame 𝐵𝐵𝑡𝑡 = {𝐵𝐵1𝑡𝑡 , … ,𝐵𝐵𝑛𝑛𝑡𝑡}. To 
develop a heuristic-evaluation function for the association of the pair < 𝐵𝐵𝑖𝑖𝑡𝑡−1,𝐵𝐵𝑗𝑗𝑡𝑡 > for the A* 
algorithm, we must assume that each blob in (𝑡𝑡)th frame is a cluster center. Using FCM 
clustering, we measure the confidence degree of the blob 𝐵𝐵𝑖𝑖𝑡𝑡−1 in the (𝑡𝑡 − 1)th frame that 
belongs to a cluster wherein the center of 𝐵𝐵𝑗𝑗𝑡𝑡 is in (𝑡𝑡)th frame. FCM clustering is a method 
whereby classifications are made according to the membership degree that is commensurate 
with the distance of the clusters and the input data [12]. The same process is repeated for the 
calculation of the cluster center until the change is within the acceptable range of the threshold 
value. The first step of FCM clustering is an establishment of the number of clusters and an 
initialization according to the exponential weight. The second step is the calculation of the 
center point of the fuzzy clustering. The third step is a calculation of the new membership 
function for the center of the cluster. Lastly, if the change in the cluster is less than the 
threshold value, the repeated process ends; however, if the change in the cluster is greater than 
or equal to the threshold value, the process is repeated from the second step onward. 
 

 

 
 

Fig. 2. (𝑡𝑡 − 1)th frame and (𝑡𝑡)th frame for blob matching of each blob 
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We defined the joint feature 𝑤𝑤��⃗ 𝑗𝑗 = [𝑑𝑑𝑗𝑗,𝜃𝜃𝑗𝑗], where 𝑑𝑑𝑗𝑗 = (𝑑𝑑𝑗𝑗 ∙ 𝑥𝑥,𝑑𝑑𝑗𝑗 ∙ 𝑦𝑦) ∈ 𝑅𝑅2 represents the 
distance vector of a point and 𝜃𝜃𝑗𝑗 represents the orientation of this vector. A set of joint features 
can be represented as the following 𝑊𝑊���⃗ 𝑡𝑡: 
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where 𝐵𝐵𝑗𝑗𝑡𝑡 is the j th blob in the (𝑡𝑡)th frame and 𝐵𝐵𝑖𝑖𝑡𝑡−1 is an i th blob in the (𝑡𝑡 − 1)th frame. 
 A set of the joint features of a blob center can be represented as the following 𝑊𝑊���⃗ 𝑡𝑡−1: 
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(5) 

 
where 𝑎𝑎𝑖𝑖𝑡𝑡−2 is an index of a blob in the (𝑡𝑡 − 2)th frame, which is connected to the i th blob in 
the (𝑡𝑡 − 1)th frame, 𝐵𝐵𝑖𝑖𝑡𝑡−1. Thus, 𝑤𝑤��⃗ 𝑖𝑖

𝑡𝑡−1 denotes velocity vector of (𝑖𝑖)𝑡𝑡ℎ  blob of (𝑡𝑡 − 1)th frame 
in polar coordinates. 
 As shown in Fig. 2, 𝑔𝑔𝑖𝑖𝑗𝑗𝑡𝑡−1 is the confidence degree for blob 𝐵𝐵𝑖𝑖𝑡𝑡−1 to associate with blob 𝐵𝐵𝑗𝑗𝑡𝑡. 
This confidence degree is estimated using motion constraints that are based on the velocity 
vector and orientation angle of each blob. The confidence-degree functions for blobs between 
the (𝑡𝑡 − 1)th frame and the (𝑡𝑡)th frame satisfies the following constraints: 
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If we assume that each blob in the (𝑡𝑡)th frame is a cluster center, then we can estimate the 
confidence degree by minimizing the following function Z: 
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where q is a parameter that controls the fuzziness. It is a smoothness constraint of the velocity. 
It minimizes total differences between velocity of each blob at (𝑡𝑡 − 1)𝑡𝑡ℎ frame and  velocity 
of the corresponding blob at (𝑡𝑡)𝑡𝑡ℎ frame.  
 The confidence degrees can be derived from the following Lagrange function: 
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where λ 𝑖𝑖 are the Lagrange multipliers. By differentiating L with respect to 𝑔𝑔𝑖𝑖𝑗𝑗𝑡𝑡−1 and applying 
normalization constraints. 
 

 
𝜕𝜕𝜕𝜕
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= 0,       𝑖𝑖 = 1, … ,𝑚𝑚𝑡𝑡−1, 𝑗𝑗 = 1, … ,𝑚𝑚𝑡𝑡 (9) 

 
Then the confidence degree can be obtained as the following function: 
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For each blob in the (𝑡𝑡)th frame, the computed confidence degree is used as the value 

of the heuristic function in the A* search algorithm. This heuristic function is represented as 
the  following (𝑚𝑚 + 1) × (𝑚𝑚 + 1) cost matrix CM. 𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗 is an element of the i th row and j th 
column of the CM, and it represents the heuristic values for the 𝐵𝐵𝑖𝑖𝑡𝑡  and 𝐵𝐵𝑗𝑗𝑡𝑡−1  blob 
correspondence that is 𝑔𝑔𝑖𝑖𝑗𝑗𝑡𝑡−1. If the element 𝑔𝑔𝑖𝑖𝑗𝑗𝑡𝑡−1 is less than the threshold ε, it is set to zero. 
The last row of the CM defines 𝑒𝑒𝑡𝑡−1 so that the sum of the confidence degrees for each blob in 
the (𝑡𝑡 − 1)th frame is 1. 
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2.2.2 A* search 
The search tree is constructed as the nodes of depth 𝑖𝑖 that are the candidate nodes for 

the 𝑖𝑖 th blob in the (𝑡𝑡 − 1)th frame. Firstly, the root node 𝑆𝑆 becomes the start node that is a null 
node, and 𝑆𝑆 is placed into a priority queue. 𝑆𝑆 is selected from the priority queue and the 
successor nodes 𝐵𝐵1𝑡𝑡 ,𝐵𝐵2𝑡𝑡 , and 𝐵𝐵3𝑡𝑡  are subsequently generated; these are the blobs in the (𝑡𝑡)th 
frame with a non-zero confidence degree of association with 𝐵𝐵1𝑡𝑡−1 in eq. (11), and they are 
inserted in the priority queue and sorted according to the confidence degree. From the priority 
queue, a node with the maximum confidence degree 𝐵𝐵1𝑡𝑡 is selected and expanded. In level 2 of 
the search tree, nodes with a non-zero confidence degree regarding an association with 𝐵𝐵2𝑡𝑡−1 
will appear. After 𝐵𝐵1𝑡𝑡 is selected, the successors of 𝐵𝐵2𝑡𝑡  and 𝐵𝐵3𝑡𝑡 from eq. (11) are generated and 
inserted into the priority queue; from this queue, a node with a maximum confidence degree 
𝐵𝐵3𝑡𝑡  is selected. The successors 𝐵𝐵2𝑡𝑡  and 𝐵𝐵4𝑡𝑡 are generated, since they have non-zero confidence 
degrees for an association with 𝐵𝐵3𝑡𝑡−1. Note that a node that appears in the path from the root 
node to the current selected node is not generated as successor. This process is iterated until 
the goal node is selected from the queue. The goal node is the node in depth 𝑚𝑚 of the search 
tree if, through this iterative process, it finds the best matching pairs between the blobs in the 
(𝑡𝑡 − 1)th frame and the blobs in the (𝑡𝑡)th frame. After the search is finished, the algorithm traces 
back from the goal node to the starting node by following the path to obtain association pairs. 
From the optimal path found in the search graph of Fig. 3, the following association pairs are 
derived: 
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Fig. 3. Blob-association search tree 
 
In the search graph of Fig. 3, the dotted line represents the associations of the blobs along the 
found path at each level of the search tree. 
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3. Experiment Results 
We used the Caviar "Crowd of four people meet, walk and split"  sequence , PETS 2009 
dataset S2 from the L1 sequence view 001 and the L2 sequence view 001 as shown in Fig. 5. 
The Caviar sequence is used only for tracking in clean environment. WEKA (Waikato 
Environment for Knowledge Analysis) version 3.7, written in JAVA, is an experimental tool 
used for machine learning [27] that we used for ID3 machine learning and the visualization of 
the decision trees. Blob detection and a trajectory-generation algorithm were implemented in 
OpenCV 2.4.2 with Visual Studio 2010. 
 

 

Fig. 4. Sequence diagram of the proposed method 
 
The sequence diagram of the proposed method of this paper is shown in Fig. 4, whereby the 
data flow of the system is shown from left to right. In Fig. 4, the image sequence is provided as 
an input to the system from the left side. The detected pedestrian blobs are the data that are 
generated next, followed by the decision trees that are the next output data for the ID3 learning 
algorithm. After the merging and splitting of the blobs, each blob is represented as a center of 
the mass point. Lastly, the trajectories of the pedestrians are generated as the output data of the 
blob-association process.  
 

   
(a) CAVIAR dataset (b) PETS 2009. S2. L1. (b) PETS 2009. S2. L2. 

 
Fig. 5. data set used in the experiment 
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3.1 Dataset and Condition Description 
The video footage used in the experiments features multiple walking pedestrians whose 
motions are generally meeting and breakup situations. In our study, one pedestrian is detected 
as one blob so that a trajectory can be generated using the point-correspondence method.  

  
(a) In the merging situation (b) In the splitting situation 

Fig. 6. Merge or split situation 
 

Fig. 6 shows splitting or merging situations for the detected blobs in the image. Two 
pedestrians are detected as one blob, so the blob number 0 of Fig. 6 (a) needs to be split; 
furthermore, one pedestrian is detected as two blobs, so the blob number 0 and the blob 
number 1 of Fig. 6 (b) need to be merged. 
 

3.2 Trajectory Generation 
3.2.1 ID3 Decision Tree  

The decision trees 𝑇𝑇𝑆𝑆 and  𝑇𝑇𝑀𝑀 are generated in terms of the blob attributes that are extracted 
from the training-input image sequence. The ID3 decision tree that is obtained from the 
calculation of the entropy of the divided sets is shown in Fig. 7. Fig. 7 a) shows the split 
decision tree where “MoveDistance” is an attribute denoting the distance from the closest blob 
in the (𝑡𝑡 − 1)th frame. The “HeightDiff” attribute represents the difference between the blob 
height and the height of the closest blob in the (𝑡𝑡)th frame. “AreaDiff” represents the difference 
between the areas of two blobs. In Fig. 7 b), “MaxArea” denotes the larger area of two 
adjacent blobs, and “AreaDiff” denotes the area difference between two adjacent blobs. 

  
a) the split decision tree, 𝑇𝑇𝑆𝑆,  

for merging situations 
b) the merge decision tree, 𝑇𝑇𝑀𝑀,  

for splitting situations 
Fig. 7. Blob-merge and blob-split decision trees 
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In 𝑇𝑇𝑆𝑆, the threshold of the moving distance is 37 and the threshold of the area difference is 358. 
If it is decided that blobs are to be split from 𝑇𝑇𝑆𝑆, the blob is divided into two blobs using the 
splitting procedure. If it is decided that two blobs are to be merged from 𝑇𝑇𝑀𝑀, the two blobs are 
merged into a single blob. After the splitting and merging processes, the center of the mass of 
each blob that is calculated is used for the confidence-degree computation. 
 
3.2.2 Multiple-Pedestrian Trajectory in Clean Environment 
In the first scenario, we tested the proposed method in a clean environment, whereby we 
assumed that interferences between pedestrians such as occlusion do not occur; however, in 
cases of occlusion, we manually assigned a blob for each pedestrian. Table 1 shows the cost 
matrix that was obtained from the calculation of the confidence degree of the association of 
two blobs that were selected from the (𝑡𝑡)th frame and the (𝑡𝑡 − 1)th frame for eight sequential 
frames of the L1 sequence. For the computation of the confidence degree, ε = 0.05, and if the 
confidence degree is less than 0.05, it is set to 0. The number in (𝑖𝑖)𝑡𝑡ℎ row and (𝑗𝑗)𝑡𝑡ℎ column of 
each table represents confidence degree 𝑔𝑔𝑖𝑖𝑗𝑗𝑡𝑡−1 of each frame. For example,  the second table in 
top row is a cost matrix for corresponding blobs in the 2𝑛𝑛𝑛𝑛 frame to blobs in the 1𝑛𝑛𝑛𝑛  frame.   
0.22 in 2𝑛𝑛𝑛𝑛 row and 3𝑟𝑟𝑛𝑛  column of this table denotes confidence degree for corresponding 
2𝑛𝑛𝑛𝑛  blob of  2𝑛𝑛𝑛𝑛 frame  to the 3𝑟𝑟𝑛𝑛  blob of 1𝑠𝑠𝑡𝑡 frame, i.e. 𝑔𝑔321 . 

 

Table 1. Cost Matrix (CM) 

 

t-1  
t 1B  

2B  
3B  

4B  
5B  

6B  
7B  

8B  
9B    

1B  
2B  

3B  
4B  

5B  
6B  

7B  
8B  

9B  

1 
  
t 
h 
 
 
 
 
 
 
 

1B  0.86 0 0 0 0 0 0 0 0 2  
 
t 
h 
 

0.58 0 0 0 0 0 0.08 0.05 0 

2B  0 0.74 0.15 0 0 0 0 0 0 0.05 0.66 0.22 0 0 0 0.12 0.06 0 

3B  0 0.13 0.67 0 0 0 0 0 0 0.06 0.13 0.48 0 0 0 0.12 0.06 0 

4B  0 0 0 0.71 0.17 0 0 0 0 0.05 0 0 0.64 0.10 0 0.12 0.06 0 

5B  0 0 0 0.12 0.62 0.05 0 0 0 0.05 0 0 0.09 0.62 0 0.12 0.06 0 

6B  0 0 0 0 0 0.67 0.10 0 0 0.05 0 0 0 0 0.71 0.25 0 0 

7B  0 0 0 0 0 0.12 0.73 0.05 0 0.05 0 0 0 0 0.08 1 0.06 0 

8B
 0 0 0 0 0 0 0 0.75 0 0.06 0 0 0 0 0 0.11 0.56 0 

9B
 0 0 0 0 0 0 0 0 0.94 0.05 0 0 0 0 0 0.08 0 0.70 

 

3  
 
t 
h 
 
 
 
 
 
 

1B  0.82 0 0 0 0.06 0 0 0.08 0 
 4  

 
t 
h 
 

0.81 0 0 0 0 0.09 0 0 0 

2B  0 0.45 0.25 0.07 0.08 0.06 0.06 0.09 0 0 0.79 0.15 0 0 0.12 0 0 0 

3B
 

0 0.21 0.36 0.06 0.08 0.05 0.06 0.09 0 0 0.06 0.53 0 0 0.11 0 

 

0 

4B  0 0.06 0.06 0.49 0.13 0.06 0.06 0.08 0 0 0 0 0.64 0.06 0.13 0 0 0 

5B
 

0 0.06 0.07 0.11 0.35 0.06 0.07 0.09 0 0 0 0.05 0.06 0.62 0.12 0.07 0 0 

6B
 

0 0 0.05 0.06 0.07 0.52 0.11 0.06 0 0 0 0 0 0 1 0.09 0 0.05 

7B
 

0 0.06 0.07 0.07 0.10 0.11 0.52 0.09 0 0 0 0.05 0 0.07 0.23 0.57 0 0 

8B
 

0 0.05 0.06 0.06 0.08 0 0.05 0.37 0 0 0 0.05 0 0 0.11 0 0.75 0 

9B
 

0 0 0 0 0.05 0 0 0.06 0.65 0 0 0 0 0 0.10 0 0 0.63 
 

5  
 
t 
h 
 
 
 
 
 
 

1B  0.57 0 0 0 0 0 0 0 0.12 
 6  

 
t 
h 
 

0.80 0 0 0 0 0 0 0 0 

2B  0.05 0.66 0.12 0 0 0 0 0 0.12 0 0.59 0.06 0.06 0 0 0 0 0 

3B
 

0.06 0.07 0.54 0 0 0 0 0 0.12 0 0.06 0.69 0 0 0 0 0 0 

4B  0 0 0.05 0.66 0 0 0 0 0.12 0 0.07 0 0.66 0 0 0 0 0 

5B
 

0.06 0 0.06 0 0.64 0 0.09 0 0.12 0 0.05 0 0 0.61 0 0.14 0 0 
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6B
 

0 0 0 0 0 0.72 0.07 0 0.13 0 0 0 0 0 0.76 0.06 0 0.05 

7B
 

0.06 0 0.06 0 0.08 0.05 0.60 0 0.12 0 0.05 0 0 0.12 0 0.57 0 0 

8B
 

0.06 0 0.05 0 0 0 0 0.83 0.12 0 0.05 0 0 0 0 0 0.76 0 

9B
 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.63 
 

7  
 
t 
h 
 
 
 
 
 
 
 

1B  0.71 0 0 0 0 0 0 0 0 
 8  

 
t 
h 
 

0.66 0 0.06 0 0 0 0 0.05 0 

2B  0 0.74 0 0.09 0 0 0.05 0.05 0 0 0.68 0.07 0.11 0 0 0 0.06 0 

3B
 

0 0 0.67 0 0 0 0.05 0.05 0 0.05 0 0.51 0 0 0 0 0.06 0 

4B  0 0.06 0 0.63 0 0 0.05 0.05 0 0 0.09 0.07 0.61 0 0.05 0 0.05 0 

5B
 

0 0 0 0 0.71 0 0.30 0.05 0 0 0 0.07 0 0.51 0.05 0.24 0.06 0 

6B
 

0 0 0 0 0 0.74 0.05 0.06 0.05 0 0 0.06 0 0 0.58 0 0.06 0.5 

7B
 

0 0 0 0 0.1 0 0.35 0.06 0 0 0 0.07 0 0.19 0.07 0.46 0.09 0 

8B
 

0 0 0 0 0 0 0.06 0.58 0 0 0 0.07 0 0 0.07 0.06 0.53 0 

9B
 

0 0 0 0 0 0 0 0 0.63 0 0 0 0 0 0 0 0 0.62 

 
Fig. 8 shows the generated trajectories for the S2 views of the L1 and L2 sequences from the 
PETS 2009 dataset. The pedestrian group consists of nine people in the (a) L1 sequence and 33 
people in the (b) L2 sequence. The pedestrians of (a) frequently change their moving direction 
in comparison with those of (b). The L1 and L2 sequences generated trajectories of 30 frames 
and 26 frames, respectively. Fig. 8 (c) shows the trajectories that were traced using the 
proposed method for the L1 sequence, and Fig. 8 (d) shows the generated trajectories for the 
L2 sequence. For both cases, the generated trajectories are exactly matched with the ground 
truth. 

 
(a) L1 ground-truth trajectories 

 

(b) L2 ground-truth trajectories 

 
(c) L1 trajectories of the proposed method 

 

 
(d) L2 trajectories of the proposed method 

Fig. 8. Multiple trajectories of pedestrians 
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Table 2. Tracking performance in clean environment 

 

 Noise CCPR CDTR AIDC 
CAVIAR 
data set 

0 % 100 % 100 % 0 % 

50 % 98 % 100 % 0.1 % 
PETS 

data set 
0 % 100 % 100 % 0.0 % 

9 % 99 % 100 % 0.0 % 

18 % 99 % 100 % 0.0 % 

27 % 98 % 100 % 0.1 % 
 
 
Table 2 shows the tracking performance for the trajectory generation of Fig. 8 (d) and 
CAVIAR data set. The generated trajectories of the L2 sequence show the ratio of the 100 % 
correctly detected tracks (CDTR), the ratio of the 100 % correctly corresponding pairs (CCPR), 
and the 0 % average ID change (AIDC) in the first row, where there is no added noise. We 
added noise for the blob locations, and for each added noise, we measured the CCPR, CDPR, 
and AIDC [5]. 
 

3.2.3 Tracking in Real Environment 
In the second scenario, we tested the proposed method in a real environment where 
interferences between pedestrians were considered. In this scenario, the generated decision 
trees are used for splitting a blob and merging blobs. For the quantitative performance 
evaluation for the experiment in this scenario, we use the MOTA (Multiple Object Tracking 
Accuracy) that is provided by the Classification of Events, Activities, and Relationships 
(CLEAR) consortium. The MOTA is a performance index for the measurement of tracking 
accuracy according to the sum of the following three errors: ratio of missed tracking target, 
false detection rate, and ratio of mismatched blobs. A comparison between the tracking results 
obtained from the experiment and the GT trajectories yielded the following findings: The miss 
rate is 3.42 % and the false positive rate is 27.82 %. As shown in Fig. 9, our proposed method 
shows a MOTA of 68.75 %. We also compared the performance indexes of other participants 
to the PETS 2009. Regarding the 2D MOT benchmark features, the tracking results were 
compared for the PETS 2009 S2 L2 images. The index used in Fig. 9 is taken from the 
state-of-the-art methods of the MOT Challenge Benchmark [24]. Our method produced 
favorable results in comparison with those of the MOT Challenge Benchmark; for the 
comparison, our method-exclusion process is based on the multi-view images.  
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Matrix Value 

Precision 72.17 % 

Miss rate 3.42 % 

False 
pos. rate 27.82 % 

MOTA 68.75 % 

 

Fig. 9. Tracking-performance comparison with other methods  

4. Conclusion 
 During the formulation of a method for the generation of trajectories for multiple 

pedestrians, numerous difficulties arise. Our point-correspondence algorithm for 
multiple-object tracking that was previously proposed has been modified and expanded in this 
work. To track multiple pedestrians in a real environment, we consider the interactions 
between pedestrians as the most important issue. We therefore developed a decision method 
for the splitting and merging of blobs, whereby decision trees learned from the ID3 algorithm 
are used to resolve the occlusion problem of pedestrians. For the identified situations, the 
blob-splitting or blob-merging processes are applied for the redefinition of a blob for each 
pedestrian and to calculate the association costs. We used the A* algorithm to successfully 
generate the pedestrian trajectories, whereby a smooth constraint is used to devise the heuristic 
function for the association of a blob in the (𝑡𝑡)th frame with a blob in the (𝑡𝑡 − 1)th frame. In our 
experiment, we used the MOTA index for a performance evaluation regarding 
multiple-pedestrian tracking. In a comparison between the proposed method and the 
state-of-the-art methods of the 2009 MOT Challenge Benchmark, a favorable performance 
was observed. We did, however, restrict the compared methods to the tracking systems from 
single-view image sequences, but we are going to improve the system so that it can handle 
more-frequent pedestrian interactions. 
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