• Title/Summary/Keyword: Fuzzy rule

Search Result 1,020, Processing Time 0.027 seconds

A study on gap treatment in EMS type Maglev (상전도 흡입식 자기부상열차에서 공극처리방식에 대한연구)

  • Sung, Ho-Kyung;Jho, Jeong-Min;Lee, Jong-Moo;Kim, Dong-Sung
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.189-197
    • /
    • 2006
  • Maglev using EMS becomes unstable by unexpected big air-gap disturbance. The main causes of the unexpected air-gap disturbance are step-wise rail joint and large distance between rail splices. For the stable operation of the Maglev, the conventional system uses the threshold method, which selects one gap sensor among two gap sensors installed on the magnet to read the gap between magnet and guide rail. But the threshold method with a wide bandwidth makes the discontinuous air-gap signal at the rail joints because of the offset in air gap sensors and/or the step-wise rail joins. Further more, in the case of the one with a narrow bend-width, it makes Maglev system unstable because of frequent alternation. In this paper, a new method using fuzzy rule to reduce air-gap disturbances proposed to improve the stability of Maglev system. It treats the air-gap signal from dual gap sensors effectively to make continuous signal without air gap disturbance. Simulation and experiment results proved that the proposed scheme was effective to reduce air-gap disturbance from dual gap sensors in rail joints.

  • PDF

Temperature and Wind Control of Virtual Warmth Image Using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 가상의 열 영상 온도와 풍향 제어)

  • Kang, Kyoung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.387-392
    • /
    • 2008
  • 본 논문에서는 에너지 절약을 위한 방법으로 여름철 냉방의 적정 온도 및 풍향을 제어하기 위한 가상의 시뮬레이션을 목적으로 열 영상과 퍼지 추론 규칙을 적용한 온도 및 풍향 제어 기법을 제안한다. 온도 제어를 위한 가상 시뮬레이션에서 열 영상을 분석하기 위해서 영상을 $300{\times}400$의 크기를 가지는 색상 분포 영상으로 변환한다. 색상 분포 영상은 Red, Magenta, Yellow, Green, Sky, Blue의 온도 값을 가지는 R, G, B 값이며 각 색상은 $ 24.0^{\circ}C$에서 $27.0^{\circ}C$의 분포의 온도 값을 가진다. 색상 분포 영상은 아래 계층부터 레벨1에서 레벨10의 높이 계층으로 분류한다. 분류한 각 계층은 고유의 색상 분포도를 가지며 색상이 가지는 온도 수치에 따라서 계층별로 온도를 구성한다. 풍향 제어를 위한 각 계층의 높이는 레벨1에서 레벨3까지는 하위층이며, 레벨 4부터 레벨 7은 중간층, 레벨 8부터 레벨 10은 상위층으로 분류한다. 각 계층의 온도와 높이 레벨 값은 온도 조절과 풍향의 우선 순위, 강도 조절, 지속 시간을 구하기 위한 파라미터이다. 실내 공간의 전체적인 온도의 균형과 풍향을 제어하는 과정으로 풍향의 방향, 지속시간을 적용하고 풍향의 강도를 구하기 위해서 색상 분포영상의 각 구간의 온도 및 높이의 특징을 적용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 풍향의 강도를 구한다.

  • PDF

Nucleus Recognition of Uterine Cervical Pap-Smears using Kapur Method and Fuzzy Reasoning Rule (Kapur 방법과 퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kang, Kyoung-Min;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.241-247
    • /
    • 2007
  • 자궁 경부 세포진 영상의 핵 추출을 위해서는 영상의 배경과 핵 그리고 세포질 영역의 구분이 중요하다. 또한 정상 세포핵과 암종 세포핵의 구분 및 인식을 위해서는 세포핵들의 형태학적 특징을 이용한 분류 기준을 세워야한다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵의 후보 영역과 핵을 추출하기 위해 현미경 400배율 확대 사진을 획득하는 과정에서 훼손된 컬러 영상을 복원하기 위한 방법으로 Lighting Compensation을 적용하여 영상을 보정한다. 그리고 배경 영역과 세포핵 영역을 구분하기 위해 영상의 R,G,B 영역의 히스토그램의 분포를 이용하여 배경을 제거한다. 배경이 제거된 영상을 그레이 영상으로 변환 한 후, 히스토그램 명암도의 값을 이용하여 세포핵 영역과 세포질을 분류하여 세포핵 영역을 추출한다. 그리고 Kapur 방법을 적용하여 세포핵 영역의 엔트로피 누적확률을 구한 후, 영상을 이진화 한다. Kapur 방법이 적용된 이진화 영상에서 세포핵 영역의 중심과 주위 화소를 비교하는 $3\times3$ 마스크를 적용하여 영상의 미세한 잡음을 제거 한 후, 8방향 윤곽선 추적 알고리즘을 적용하여 최종적으로 세포핵 영역을 추출한다. 추출된 세포핵의 영역을 분류 및 인식하는 과정으로 세포의 외각의 방향성 정보, 핵의 크기, 그리고 면적 비율의 특징을 이용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 자궁 경부 세포진 영상에서 정상 세포핵 및 암종 세포핵을 인식한다.

  • PDF

Design and Implementation of Customer Personalized System Using Web Log and Purchase Database

  • Lee Jae-Hoon;Chung Hyun-Sook;Lee Sung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • In this paper, we propose a customer personalized system that presents the web pages to users which are customized to their individuality. It analyzes the action of users who visit the shopping mall, and preferentially supplies the necessary information to them. When they actually buy some items, it forecasts the user's access pattern to web site and their following purchasable items and improves their web page on the bases of their individuality. It reasons the relation among the web documents and among the items by using the log data of web server and the purchase information of DB. For reasoning, it employs Apriori algorithm, which is a method that searches the association rule. It reasons the web pages by considering the user's access pattern and time by using the web log and reasons the user's purchase pattern by using the purchase information of DB. On the basis of the relation among them, it appends the related web pages to link of user's web pages and displays the inferred goods on user's web pages.

Datamining: Roadmap to Extract Inference Rules and Design Data Models from Process Data of Industrial Applications

  • Bae Hyeon;Kim Youn-Tae;Kim Sung-Shin;Vachtsevanos George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.200-205
    • /
    • 2005
  • The objectives of this study were to introduce the easiest and most proper applications of datamining in industrial processes. Applying datamining in manufacturing is very different from applying it in marketing. Misapplication of datamining in manufacturing system results in significant problems. Therefore, it is very important to determine the best procedure and technique in advance. In previous studies, related literature has been introduced, but there has not been much description of datamining applications. Research has not often referred to descriptions of particular examples dealing with application problems in manufacturing. In this study, a datamining roadmap was proposed to support datamining applications for industrial processes. The roadmap was classified into three stages, and each stage was categorized into reasonable classes according to the datamining purposed. Each category includes representative techniques for datamining that have been broadly applied over decades. Those techniques differ according to developers and application purposes; however, in this paper, exemplary methods are described. Based on the datamining roadmap, nonexperts can determine procedures and techniques for datamining in their applications.

Child's Color Psychology Analysis using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 아동의 색채 심리 분석)

  • Kim, Jin-Ok;Oh, Am-Suk;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.820-823
    • /
    • 2005
  • 개인의 경험을 통해 얻어지는 외부의 물리적 자극에 대한 복합적인 감성을 분석하여 공학적으로 처리함으로서 인간의 보다 편리하고 안락한 생활을 영위하도록 하는 연구가 진행되고 있다. 색채는 아동의 감성과 성격을 이해할 수 있는 중요한 요소이다. 또한 아동은 자신의 심리 상태나 갈등을 그리기나 낙서 등의 작업을 통해서 아동의 감성을 무의식적으로 표출하는 경우가 많다. 따라서 아동이 선호하는 색채를 통해 아동의 감성상태를 파악할 수 있다. 본 논문에서는 인간의 오감 즉, 시각, 청각, 후각, 미각, 촉각 중에서 시각(색채)에 따른 감성 상태를 파악하기 위하여 아동이 그린 그림의 색채를 분석한다. 그리고 퍼지 논리와 퍼지 추론 규칙을 적용하여 감성 상태를 파악하는 방법을 제안한다. 제안된 감성 처리 방법을 알슈울러와 해트윅(Alschuler and Hattwick)과 박재명의 색채에 따른 감성 상태에 적용한 결과, 제안된 감성 처리 방법이 효율적인 것을 확인하였다.

  • PDF

A Model Using IOT Based Railway Infrastructure Sensor Data for Recognition of Abnormal state (IOT기반 철도인프라 데이터를 활용한 이상상황 인식모델)

  • Jang, Gyu-JIn;Ahn, Tae-Ki;Kim, Young-Nam;Jung, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.771-773
    • /
    • 2018
  • 인공지능(AI), 사물인터넷(IoT)등의 4차 산업기술은 철도안전의 핵심수단으로 부상하고 있으며 차량, 위험관리, 운행관리, 보안관리 등의 점진적인 적용분야 확장을 통해 철도안전에 대한 신뢰성을 향상시킬 수 있는 방안에 대한 관심이 집중되고 있다. 본 논문에서는 IoT 기반의 다양한 철도인프라 데이터를 활용하여 열차주행상태에 영향을 줄 수 있는 이상상황 인식 모델 및 열차자율주행을 위한 제어기술에 필요한 정보로 인프라 상태를 제공하는 방식을 제안한다. 철도 인프라 상황인지에 필요한 데이터는 레일온도, 선로 지정물, 승객 수, 선로 적설량을 지정하였고, 제안 인식모델의 스게노 퍼지추론 방식을 적용한 후 철도차량 운전관련 취급규정 및 취급세척을 기반으로 퍼지규칙(Fuzzy Rule)을 15개 생성하였다. 인프라데이터셋을 활용하여 제안모델의 인식률 평가에 사용하였으며 인식률 결과는 약 86%의 정확성을 보였다. 퍼지추론 기반 방식의 철도인프라 이상상태 인식모델을 철도분야에 접목시킨다면 기존의 관제기반 방식보다 효율적인 철도인프라 상황인식이 가능할 것으로 판단된다.

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

A Study for Autonomous Intelligence of Computer-Generated Forces (가상군(Computer-Generated Forces)의 자율지능화 방안 연구)

  • Han, Chang-Hee;Cho, Jun-Ho;Lee, Sung-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • Modeling and Simulation(M&S) technology gets an attention from various parts such as industry and military. Especially, military uses the technology to cope with a different situation from the one in the Cold War and maximize the effect of training against the cost in the new environment. In order for the training based on M&S technology to be effective, the situations of a battlefield and a combat must be more realistically simulated. For this, a technique development on Computer-Generated Forces(CGF) which represents a unit's simulation logic and a human's simulated behaviors is focused. The CGF simulating a human's behaviors can be used in representing an enemy force, experimenting behaviors in a future war, and developing a new combat idea. This paper describes a methodology to accomplish Computer-Generated Forces' autonomous intelligence. It explains the process of applying a task behavior list based on the METT+T element onto CGFs. On the other hand, in the domain knowledge of military field manual, fuzzy facts such as "fast" and "sufficient" whose real values should be decided by domain experts can be easily found. In order to efficiently implement military simulation logics involved with such subjectivity, using a fuzzy inference methodology can be effective. In this study, a fuzzy inference methodology is also applied.

Control Method for the Number of Travel Hops for the ACK Packets in Selective Forwarding Detection Scheme (선택적 전달 공격 탐지기법에서의 인증 메시지 전달 홉 수 제어기법)

  • Lee, Sang-Jin;Kim, Jong-Hyun;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • A wireless sensor network which is deployed in hostile environment can be easily compromised by attackers. The selective forwarding attack can jam the packet or drop a sensitive packet such as the movement of the enemy on data flow path through the compromised node. Xiao, Yu and Gao proposed the checkpoint-based multi-hop acknowledgement scheme(CHEMAS). In CHEMAS, each path node enable to be the checkpoint node according to the pre-defined probability and then can detect the area where the selective forwarding attacks is generated through the checkpoint nodes. In this scheme, the number of hops is very important because this parameter may trade off between energy conservation and detection capacity. In this paper, we used the fuzzy rule system to determine adaptive threshold value which is the number of hops for the ACK packets. In every period, the base station determines threshold value while using fuzzy logic. The energy level, the number of compromised node, and the distance to each node from base station are used to determine threshold value in fuzzy logic.