• 제목/요약/키워드: Fuzzy model

검색결과 2,834건 처리시간 0.032초

병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정 (Identification of Fuzzy System Driven to Parallel Genetic Algorithm)

  • 최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화 (Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

On Chaotic Behavior of Fuzzy Inferdence Rule Based Nonlinear Functions

  • Ikoma, Norikazu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.861-864
    • /
    • 1993
  • This research provides the results of a trial to generate the chaos by using nonlinear function constructed by fuzzy inference rules. The chaos generation function or chaotic behavior can be obtained by using Takagi-Sugeno fuzzy model with some constraint of the relationship of its parameters. Two examples are shown in this research. The first is simple example that construct of logistic image by fuzzy model. The second is more complicated one that provide the chaotic time series by non-linear autoregression based on fuzzy model. Simulated results are shown in these examples.

  • PDF

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

지능형 디지탈 재설계를 이용한 도립 진자의 디지탈 제어 (Digital Control of An Inverted Pendulum by Using Intelligent Digital Redesign)

  • 장욱;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권10호
    • /
    • pp.457-463
    • /
    • 2001
  • This paper presents a simple and new digital redesign algorithm for fuzzy-model-based controllers. In the first stage, a continuous-time TS fuzzy model is constructed for a given continuous-time nonlinear system and a corresponding continuous-time fuzzy-model-based controller is established based on the existing controller synthesis algorithms. In the second stage, the continuous-time fuzzy-model-based controller is converted to equivalent discrete-time fuzzy-model-based controller, aiming at maintaining the property of the analogue controlled system, which are called intelligent digital redesign. Finally, the proposed method is applied to the digital control of inverted pendulum system to shows the effectiveness and the effectiveness and the feasibility of the method.

  • PDF

퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링 (Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy)

  • 이재하;이진현;양승한
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

Design of T-S Fuzzy Model based Adaptive Fuzzy Observer and Controller

  • Ahn, Chang-Hwan
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.9-21
    • /
    • 2009
  • This paper proposes the alternative observer and controller design scheme based on T-S fuzzy model. Nonlinear systems are represented by fuzzy models since fuzzy logic systems are universal approximators. In order to estimate the unmeasurable states of a given unknown nonlinear system, T-S fuzzy modeling method is applied to get the dynamics of an observation system. T-S fuzzy system uses the linear combination of the input state variables and the modeling applications of them to various kinds of nonlinear systems can be found. The proposed indirect adaptive fuzzy observer based on T-S fuzzy model can cope with not only unknown states but also unknown parameters. The proposed controller is based on a simple output feedback method. Therefore, it solves the singularity problem, without any additional algorithm, which occurs in the inverse dynamics based on the feedback linearization method. The adaptive fuzzy scheme estimates the parameters and the feedback gain comprising the fuzzy model representing the observation system. In the process of deriving adaptive law, the Lyapunov theory and Lipchitz condition are used. To show the performance of the proposed observer and controller, they are applied to an inverted pendulum on a cart.

퍼지 동정에 의한 교통경로선택 (Traffic Rout Choice by means of Fuzzy Identification)

  • 오성권;남궁문;안태천
    • 한국지능시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.81-89
    • /
    • 1996
  • 퍼지모델링의 설계 방법을 교통경로선택의 모델동정을 위하여 제안한다. 제안된 퍼지모델은 최적화이론, 퍼지구현규칙을 사용하여 ""IF..., THEN...""의 효율적인 형태로 시스템구조와 파라미터 동정을 시행한다. 이 논문에서 간략추론, 선형추론, 병형된 선형추론의 3가지종류의 퍼지모델링 방법을 제시한다. 이 퍼지추론 방법은 인간의 교통행동의 정확한 추정과 정밀한 묘사를 위해 교통경로선택 모델을 개발하기 위해 이용된다. 퍼지규칙의 전반부 구조와 파라미터를 동정하기 위해 개선된 컴플렉스법을 사용하고, 최적후반부 파라미터를 동정하기 위해 최소자승법이 사용된다. 교통경로선택 데이타가 제안된 퍼지모델 성능을 평가하기 위해 사옹된다. 제안된 방법이 기존의 다른 연구들 - 즉 BL, PS, FL, NN, FNNs 모델 등 - 보다 더 높은 정확도를 가진 퍼지모델을 생성함을 보인다. 생성함을 보인다.

  • PDF

Estimation of Parameters in Fuzzy Time Series Model with Triangular Fuzzy Numbers

  • 손은희;손건태
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.267-269
    • /
    • 2000
  • Using the fuzzified coefficients, ARMA processes can be extended to fuzzy time series model. In this paper, the estimation of parameters in the fuzzy time series model with asymmetric triangular fuzzy coefficients is studied. Nonlinear programming is applied to get solutions of parameters.

  • PDF

퍼지 속성 집합을 이용한 데이터 분석 모델 (Data Analysis Model using the Fuzzy Property Set)

  • 이진호;이전영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.252-255
    • /
    • 1997
  • In this paper, we will propose the methodology of data analysis using the fuzzy property set model. In real world, the data can be represented with the object. $\theta$. and the property, $\pi$, and its has-property relation, P. Then, the conceptual space can be defined with the chosen properties. Each object has a unique location in the conceptual space. In Fuzzy mode, the fuzzy property, and fuzzy conceptual space can be redefined. To analyze data using the fuzzy property set model, the rough set need to be defined in the fuzzy conceptual space.

  • PDF