• Title/Summary/Keyword: Fuzzy method

Search Result 4,492, Processing Time 0.032 seconds

Quad-rotor's stabilization control with Fuzzy + I method

  • Shin, Heon-Soo;Choe, Jeong-Yeon;Jeong, Gyeong-Gwon;Kim, Ju-Ung;O, Jeong-Hun;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1127-1128
    • /
    • 2008
  • In this paper, we propose a control method to improve control performance for a Quad-rotor Unmanned Aerial Vehicle's stabilization. The proposed method is the Fuzzy+I control that contains a fuzzy controller which processes signals from the error and the change of error, and generates the control signal by summing up fuzzy output signal and integral signal. We simulated and experimented on the fuzzy+I control method by implementing Quad-rotor UAV that is able to hovering, for the purpose of verifying the effectiveness of the proposed fuzzy+I control method in comparison with general PID control, and we found out that fuzzy+I controller improved control performance of the system.

  • PDF

An Auto Fuzzy Rule-base Extraction Method using Genetic Algorithm (유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식)

  • 박진성;손동설;임중규;정경권;이현관
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.1003-1006
    • /
    • 2003
  • This paper proposed An auto fuzzy rule-base extraction method using genetic algorithm. The suggested method is an auto fuzzy rule-base extration method neither expert advise fuzzy rule-base nor trial and error fuzzy rule-base. In order to confirm the validity of proposed method, we have applicated dc motor control and confirmed effective.

  • PDF

Intelligent Digitally Redesigned Fuzzy Controller

  • Joo, Young-Hoon;Lee, Yeun-Woo;Cha, Dai-Bum;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • In this paper, we develop the intelligent digitally redesigned fuzzy controller for nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to model the nonlinear systems and a continuous-time fuzzy-model-based controller is designed based on the extended parallel-distributed-compensation(EPDC) method . The digital controllers are determined from existing analogue controllers. The proposed method provides an accurate and effective method for digital control of continuous-time nonlinear systems and enables us to efficiently implement a digital controller via the pre-determined continuous-time 75 fuzzy-model-based controller. We have applied the proposed method to the duffing forced oscillation system to show the effectiveness and feasibility of the proposed method.

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Implementation of Hardware Circuits for Fuzzy Controller Using $\alpha$-Cut Decomposition of fuzzy set

  • Lee, Yo-Seob;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.200-209
    • /
    • 2004
  • The fuzzy control based on $\alpha$-level fuzzy set decomposition. It is known to produce quick response and calculating time of fuzzy inference. This paper derived the embodiment computational algorithm for defuzzification by min-max fuzzy inference and the center of gravity method based on $\alpha$-level fuzzy set decomposition. It is easy to realize the fuzzy controller hardware. based on the calculation formula. In addition. this study proposed a circuit that generates PWM actual signals ranging from fuzzy inference to defuzzification. The fuzzy controller was implemented with mixed analog-digital logic circuit using the computational fuzzy inference algorithm by min-min-max and defuzzification by the center of gravity method. This study confirmed that the fuzzy controller worked satisfactorily when it was applied to the position control of a dc servo system.

Intelligent Control Method Using Genetic Algorithm and Fuzzy Logic Controller (유전자 알고리즘과 퍼지 논리 제어기를 이용한 지능 제어 방식)

  • 김주웅;이승형;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1374-1383
    • /
    • 2001
  • In the fuzzy control method behaves more robustness than conventional control method, we propose a intelligent control method that membership functions and scaling factor of the fuzzy logic controller are optimized by genetic algorithm under off-line, and then fuzzy logic controller is constructed by the optimization parameters under on-line. In order to verify the usefulness of the proposed control method, we are applied to one link manipulator, and confirmed that the proposed control method is reduced the fuzzy rule base and is the better performance than the conventional fuzzy control method.

  • PDF

Conceptual Object Grouping for Multimedia Document Management

  • Lee, Chong-Deuk;Jeong, Taeg-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2009
  • Increase of multimedia information in Web requires a new method to manage and service multimedia documents efficiently. This paper proposes a conceptual object grouping method by fuzzy filtering, which is automatically constituted based on increase of multimedia documents. The proposed method composes subsumption relations between conceptual objects automatically using fuzzy filtering of the document objects that are extracted from domains. Grouping of such conceptual objects is regarded as subsumption relation which is decided by $\mu$-cut. This paper proposes $\mu$-cut, FAS(Fuzzy Average Similarity) and DSR(Direct Subsumption Relation) to decide fuzzy filtering, which groups related document objects easily. This paper used about 1,000 conceptual objects in the performance test of the proposed method. The simulation result showed that the proposed method had better retrieval performance than those for OGM(Optimistic Genealogy Method) and BGM(Balanced Genealogy Method).

The Fuzzy Traffic Control Method for ABR Service (ABR 서비스에서 퍼지 트래픽 제어 방식)

  • Yu, Jae-Taek;Kim, Yong-U;Lee, Jin-Lee;Lee, Gwang-Hyeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1880-1893
    • /
    • 1996
  • In this paper, we propose the fuzzy traffic control method in ABR service for the effective use of ATM link. This method, a modified version of EPRCA which is one of rate control methods in ABR service, controls the values of the transmission rates of source by using the fuzzy traffic inference based on switch buffer size and buffer variate rate. For this method, we developed a model and algorithm of the fuzzy traffic control method and a fuzzy traffic controller, after studying fuzzy and neural networks which applied to ATM traffic control and EPRCA. For the fuzzy traffic controller, we also designed a membership function, fuzzy control rules and a max-min inferencing method. We conducted a simulation and compared the link utilization of the fuzzy traffic control method with that of the EPRCA method. The results of the simulation indicated that, compared to EPRCA, the fuzzy traffic control method improves the link utilization by 2.3% in a normal distribution model and by 2.7% in the MMPP model of the source.

  • PDF

A Method for Propagating Fuzzy Concepts through Fuzzy IF-THEN-ELSE Rules

  • Kim, Doohyun;Lim, Younghwan;Kim, Jin H.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.2
    • /
    • pp.21-35
    • /
    • 1987
  • This paper presents a method for propagating fuzzy concepts through fuzzy IF-THEN-ELSE rules. A fuzzy IF-THEN-ELSE rule consists of a set of fuzzy condition and conclusion pairs. These pairs assumed to contain informations about a fuzzy mapping from fuzzy concepts of condition parts to the fuzzy concepts of conclusion parts. Conventionally, vectors are used to define fuzzy concepts and matrices are used to define a fuzzy mapping between fuzzy conditions and conclusions. This approach, however, does not satisfy the existing condition property, i.e., when a fuzzy input data exactly matches to a fuzzy condition, fuzzy output data should be mapped to a corresponding fuzzy conclusion. Alternatively, we propose a parameterized approach in which every fuzzy concept is described by a parameterized standard function, including fuzzy conditions and fuzzy conclusions. A fuzzy IF-THEN-ELSE rule takes the parameterized fuzzy concept as an input, and produces a standard function with new parameters as an output. New parameters are determined by a parameterwise interpolation. That is, each output parameters are determined by interpolating parameters of the same class contained in fuzzy conclusions. Obviously, the proposed scheme always satisfies the existing condition property.

  • PDF