• Title/Summary/Keyword: Fuzzy method

Search Result 4,492, Processing Time 0.026 seconds

Optimization of Fuzzy Set-Fuzzy Systems based on IG by Means of GAs with Successive Tuning Method

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • We introduce an optimization of fuzzy set-fuzzy systems based on IG (Information Granules). The proposed fuzzy model implements system structure and parameter identification by means of IG and GAs. The concept of information granulation was coped with to enhance the abilities of structural optimization of the fuzzy model. Granulation of information realized with C-Means clustering helps determine the initial parameters of the fuzzy model such as the initial apexes of the membership functions in the premise part and the initial values of polynomial functions in the consequence part of the fuzzy rules. The initial parameters are adjusted effectively with the help of the GAs and the standard least square method. To optimally identify the structure and the parameters of the fuzzy model we exploit GAs with successive tuning method to simultaneously search the structure and the parameters within one individual. We also consider the variant generation-based evolution to adjust the rate of identification of the structure and the parameters in successive tuning method. The proposed model is evaluated with the performance of the conventional fuzzy model.

Fuzzy Sensor Algorithm for Measuring Traffic Information using Analytic Hierarchy Process (계층 분석방법을 이용한 교통량검지를 위한 퍼지센서 알고리즘)

  • Jin, Hyun-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.193-201
    • /
    • 2002
  • For measuring a traffic symbolic confusion Quantity and symbolic air pleasantness, we use fuzzy sensor algorithm maded by symbolic information Quantity. Hut for implementation of fuzzy sensor, we use some symbolic information item, this method cannot produce precise output because we use vague fuzzy rule method and we cannot abundance fuzzy for precision of fuzzy rule method. For this reason, this paper introduce new fuzzy sensor algorithm composed of not fuzzy rule method but using Analytic Hierachy Process. To prove that new method is good, two type of fuzzy sensor applied to traffic signal controller and through much passing vehicle, two fuzzy sensor compared each other.

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

Fuzzy Control Using A Modified Fuzzy Modelling (개선된 퍼지 모형화 기법에 의한 퍼지 제어)

  • Lee, Sang-Yong;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.349-352
    • /
    • 1991
  • Fuzzy modelling is a useful method when the variation of plant dynamics is large. In the fuzzy modelling by parameter identification, a new method is proposed in the part of premise parameters identification and in expanding MISO system into MIMO system. Using the proposed method, a fuzzy model of the drum boiler of the thermal power plant can be derived. In addition, feedwater control of the drum by fuzzy controller using the fuzzy model, is simulated.

  • PDF

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

Development of Quality Information Control Technique using Fuzzy Theory (퍼지이론을 이용한 품질 정보 관리기법 개발에 관한 연구)

  • 김경환;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.524-528
    • /
    • 1996
  • Quality information is known to have the characteristic of continuous distribution in many manufacturing processes. It is difficult to describe the process condition by classifying the distribution into discrete ranges which is based on the set concept. Fuzzy control chart has been developed for the control of linguistic data but it still utilizes the dichotomous notion of classical set theory. In this paper, the fuzzy sampling method is studied in order to manage the ambiguous data properly and incorporated for generating fuzzy control chart. The method is based on the fuzzy set concept and considered to be appropriate for the realization of a complete fuzzy control chart. The fuzzy control chart was compared with the conventional generalized p-chart in the sensitivity for quality distribution and robustiness against the noise. The fuzzy control chart with the fuzzy sampling method showed better characteristics.

  • PDF

Improvement of Control Response Characteristics for Power Facility using the Adaptive Sizing of Fuzzy Inference Method (전력설비의 제어 응답특성 개선을 위한 퍼지 추론 기법의 적응조정)

  • Lee, Hyun-Jae;Kim, Dong-Eun;Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1699-1704
    • /
    • 2018
  • In this paper, proposed a method to improve of control characteristics for power facility using the adaptive sizing of fuzzy inference method. In the use of the controller based the fuzzy logic, a basic mamdani fuzzy controller is applied. However, when the maximum value and the minimum value have to taken, the fuzzy controller can not take a normal value because of formalized grouping form. In this paper, we combine the conventional methods with single valued sets to compensate for the disadvantage caused by the mamdani method control. Simulation results show that the proposed method has better overshoot and steady state arrival time than the conventional control method.

A METHOD OF DEVELOPING SOFT SENSOR MODEL USING FUZZY NEURAL NETWORK

  • Chang, Yuqing;Wang, Fuli;Lin, Tian
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.103-109
    • /
    • 2001
  • Soft sensor is an effective method to deal with the estimation of variables, which are difficult to measure because of the reasons of economy or technology. Fuzzy logic system can be used to develop the soft sensor model by infinite rules, but the fuzzy dividing of variable sets is a key problem to achieve an accurate fuzzy logic model, In this paper, we proposed a new method to develop soft sensor model based on fuzzy neural network. First, using a novel method to divide the variable fuzzy sets by the process input and output data. Second, developing the fuzzy logic model based on that fuzzy set dividing. After that, expressing the fuzzy system with a fuzzy neural network and getting the initial soft sensor model based FNN. Last, adjusting the relative parameters of soft sensor model by the BP learning method. The effectiveness of the method proposed and the preferable generalization ability of soft sensor model built are demonstrated by the simulation.

  • PDF

ON THEIL'S METHOD IN FUZZY LINEAR REGRESSION MODELS

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.185-198
    • /
    • 2016
  • Regression analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper propose a fuzzy regression analysis applying Theils method which is not sensitive to outliers. This method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. An example and two simulation results are given to show fuzzy Theils estimator is more robust than the fuzzy least squares estimator.