• 제목/요약/키워드: Fuzzy membership

검색결과 1,234건 처리시간 0.03초

General Purpose Optical Fuzzy Computing Modules

  • Mamano, Kazuho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.777-780
    • /
    • 1993
  • Three optical fuzzy calculating modules, MAX/MIN, NOT/THROUGH, and SUP/THROUGH operating modules, are proposed. The MAX/MIN operating on inputted 2 membership functions. The NOT/THROUGH operating module calculates the complement of the membership function. The SUP/THROUGH operating module outputs an image representing the supremum (least upper bound) of the membership function. The THROUGH operation passes the image of the inputted membership function from the entrance to the exit. This paper demonstrates that these modules can output the image into which the modules transform inputted images on the basis of operation on fuzzy logic.

  • PDF

NOTE ON THE EXPECTED VALUE OF A FUNCTION OF A FUZZY VARIABLE

  • Hong, Dug-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.773-778
    • /
    • 2009
  • Recently, Xue et al. [Computers and Mathematics with Applications 55 (2008) 1215-1224] proposed a formula for the expected value of a function of a fuzzy variable based on the assumption that the fuzzy variable has a continuous membership function. In conclusion, they remained the case where the membership function of the fuzzy variable is discontinuous for the future research, and then expected to get similar results. Thus this note is to propose a new formula for the expected value of a function of a general fuzzy variable which is not restricted on having a continuous membership function. Furthermore, we give an example which cannot be applied to the formula that Xue et al. proposed. We also use the same example given by Xue et al. to show how to apply the new formula.

  • PDF

적응형 소속함수를 가지는 퍼지 제어기 (Fuzzy Controller with Adaptive Membership Function)

  • 김봉재;방근태;박현태;유상욱;이현우;정원용;이수흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.813-816
    • /
    • 1995
  • The shape and width of fuzzy membership function has an effect on performance of fuzzy controller. In this paper, neuro-fuzzy controller is proposed to improve the control performance of fuzzy controller. It has membership function, that is adapt to plant constant by using trained neural network. This neural network has been trained with back propagation algorithm. To show the effectiveness of proposed neuro-fuzzy controller with adaptive membership function, it is applied to plant (dead time + 1st order) with various plant constant.

  • PDF

퍼지 제어기의 퍼지규칙 및 멤버쉽 함수 튜닝에 유전알고리즘을 적용한 직류 모터의 속도제어 (Fuzzy Rules and Membership Functions Tunning of Fuzzy Controller Applying Genetic Algorithms of Speed Control of DC Motor)

  • 황기현;김형수;박준호;황창선;김종건
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1021-1023
    • /
    • 1996
  • This paper proposes a design of self-tuning fuzzy rules and membership functions based on genetic algorithms. Sub-optimal fuzzy rules and membership functions are found by using genetic algorithms. Genetic algorithms are used for tuning fuzzy rules and membership functions. A arbitrary speed trajectories are selected for the reference input of the proposed methods. Experimental results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on genetic algorithms.

  • PDF

유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구 (A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF

A NOVEL DISCUSSION ON POWER FUZZY GRAPHS AND THEIR APPLICATION IN DECISION MAKING

  • T. BHARATHI;S. SHINY PAULIN;BIJAN DAVVAZ
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.123-137
    • /
    • 2024
  • In this paper, Power fuzzy graphs is newly introduced by allotting fuzzy values on power graphs in such a way that the newly added edges, has the edge membership values between a closed interval which depends on vertex membership values and the length of the added edges. Power fuzzy subgraphs and total power fuzzy graphs are newly defined with properties and some special cases. It is observed that every power fuzzy graph is a fuzzy graph but the converse need not be true. Edges that are incident to vertices with the least vertex membership values are retained in the least power fuzzy subgraph. Further, the application of these concepts in real life time has been presented and discussed using power fuzzy graph model.

학습을 이용한 퍼지 제어기의 구성 (A construction of fuzzy controller using learning)

  • 안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.484-489
    • /
    • 1992
  • The inference of fuzzy controller can be considered a mapping from the controller input to membership value. The membership value, a kind of weight, has a role to decide if the input is appropriate to the rule. The membership function is described by several values, which are decided by a learning method. The learning method is adopted from adaptive filtering theory. The simulation shows the proposed fuzzy controller can learn linear and nonlinear functions. the structure of the proposed fuzzy controller becomes a kind of neural network.

  • PDF

퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템 (An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

Fuzzy수의 효율적인 산술연산수법 (An Effective Fuzzy Number Operation Method)

  • 최규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.489-491
    • /
    • 1993
  • Many optimization problem or multiple attribute, multiple alternative decision making problem may have fuzzy evaluation factors. In this case, fuzzy number operation technique is needed to evaluate and compare object functions which become fuzzy sets. Generally, fuzzy number operations can be defined by extension principle of fuzzy set theory, but it is tedious to do fuzzy number operations by using extension principle when the membership functions are defined by complex functions. Many fast methods which approximate the membership functions such as triangle, trapezoidal, or L-R type functions are proposed. In this paper, a fast fuzzy number operation method is proposed which do not simplify the membership functions of fuzzy numbers.

  • PDF

러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론 (Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function))

  • 권은아;김홍기
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권4호
    • /
    • pp.545-557
    • /
    • 2001
  • 본 논문에서는 저장 데이타베이스의 정보 시스템을 정제하여 이해 가능한 정보로 전환하고 새로운 객체를 근사 추론할 수 있도록 하기 위해 러프 소속 함수 값의 개념을 도입한 계층적 근사 분류 알 고리즘을 제안한다. 제안하는 알고리즘은 근사 추론의 한 방법인 퍼지 추론 방법의 언어적 불확실성을 속 성의 퍼지 소속 함수 값으로 나타내고 조건 속성의 소속 함수 값의 합성에 의해 근사 추론하는 방법을 이용하였으며 퍼지 소속 함수 값 대신에 러프 소속 함수 값을 이용하도록 제안하였다. 이는 퍼지 소속 함 수 값을 이용하여 괴지 규칙을 생성하는 과정을 생략할 수 있는 장점이 있다. 또한 정보 시스템 내의 속 성 중에서 수치 속성에 대한 이산화 방법을 연구하고 이것 또한 러프 소속 함수 값과 정보이론의 무질서 도의 개념을 이용한 수치 속성의 이산화를 제안하였다. 제안된 알고리즘을 이용하여 패턴 분류 문제에 교 준적으로 사용되는 IRIS 데이타에 대한 실험결과96%~98% 분류율을 나타냈으며 다른 실험 데이타에서 도 기존 알고리즘과 비교하여 수치 이산화나 근사 추론 모두 우수함을 보였다.

  • PDF