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A NOVEL DISCUSSION ON POWER FUZZY GRAPHS

AND THEIR APPLICATION IN DECISION MAKING

T. BHARATHI, S. SHINY PAULIN∗, BIJAN DAVVAZ

Abstract. In this paper, Power fuzzy graphs is newly introduced by al-
lotting fuzzy values on power graphs in such a way that the newly added

edges, has the edge membership values between a closed interval which

depends on vertex membership values and the length of the added edges.
Power fuzzy subgraphs and total power fuzzy graphs are newly defined with

properties and some special cases. It is observed that every power fuzzy

graph is a fuzzy graph but the converse need not be true. Edges that are
incident to vertices with the least vertex membership values are retained in

the least power fuzzy subgraph. Further, the application of these concepts

in real life time has been presented and discussed using power fuzzy graph
model.
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1. Introduction

A graph is a simple way of representing information as objects (vertices)
and relations (edges). The vagueness found in the objects and relations are
represented as fuzzy graphs. The interesting development on the kth power of
graphs in the field of graph theory was the motivation to newly define power fuzzy
graphs. The objective of the paper is to introduce a mathematical model based
on the concept of power fuzzy graphs. Unlike in a power graph, the membership
values for elements of a power fuzzy graph are allotted between [0,1]. Therefore,
the novelty of the power fuzzy graph model is to minimize the interval for the
allotment of membership values to edges, as the powers of the corresponding
fuzzy graph increases. This results in a better mathematical methodology to
find optimal solution to certain problems in uncertain scenarios. The problem
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of taking decision regarding better places and routes in consideration of travel
time, distance, safety, etc., can be presented and analysed using power fuzzy
graph model.

2. Literature review

The concept of fuzzy sets and fuzzy relations were formulated by Lotfi Zadeh
in 1965 [5]. The definition of fuzzy graphs based on Zadeh’s concept was coined
by Arnold Kaufmann in 1973 [2]. This was further developed by Azriel Rosen-
feld in 1975 [6], and graphical terms such as path, connectedness, bridge, tree,
cut node, and block were introduced by him. The degree, size, and order in
fuzzy graphs were defined and studied by Nagoor Gani et al. [7]. Many other
extensions of fuzzy graphs are found in [8,9,10,11]. Interesting findings on kth
power of graphs such as the connectivity results of Hamiltonian power graphs
[12], asteroidal number of power graphs [13], chromatic number of planar power
graphs [15], co-comparability of power graphs [16], Weiner index of power graphs
[17], reduced power graphs [18], spanning trees of power graphs [19], connected
complement of power graphs [20] and power of soft graphs [21] have also con-
tributed to this new concept of power fuzzy graphs and its related terms. Sev-
eral techniques and models were developed for decision-making problems such as
spherical fuzzy graph [23], picture fuzzy graph [24], q-rung picture fuzzy graph
[25], picture fuzzy soft graph [26], and m-polar fuzzy graph [27]. The basic defi-
nitions required for this study are presented in section 3. Theoretical discussions
on power fuzzy graphs are explained with results and examples in section 4. And
properties of power fuzzy subgraphs are highlighted in section 5. Some special
cases of power fuzzy graph and the application of power fuzzy graph is discussed
in section 6 and section 7 respectively.

3. Preliminaries

Definition 3.1. [1] For any k > 0, the k − th power Gk of a graph G = (V,E)
has V (Gk) = V (G), where two vertices u and v are adjacent in Gk if and only
if dG(u, v) ≤ k. G2 and G3 are called square and cube of G.

(a) (b)

Figure 1. Power graphs G1 and G2
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Definition 3.2. [3] A fuzzy Graph Gf = (V,E, σ, µ) corresponding to the crisp
graph G = (V,E) is a non-empty set V together with a pair of functions σ : V →
[0, 1] and µ : VÖV → [0, 1] such that for all u, v ∈ V , µ(u, v) ≤ min{σ(u), σ(v)},
where σ(u) and µ(u, v) represent the membership values of the vertex u and edge
(u, v) in G respectively.

Note 3.1. The sequence of vertices (v1, v2, . . . , vn) in a fuzzy graph such that
µ(vi, vi+1) > 0, i = 1, 2, . . . , (n − 1) is called a path P . The number of edges in
a path P is called the length of P .

Definition 3.3. [7] Let Gf = (V,E, σ, µ) be a fuzzy graph. The size of Gf is

defined as S(Gf ) =
∑

(v1,v2)∈V×V

µ(v1, v2). The order of Gf is defined by (O)Gf =∑
v∈V

σ(v). The degree of a vertex v1 of Gf is defined as degGf
(v1) =

∑
v ̸=v1

µ(v1, v)

for all v incident with v1.

Definition 3.4. [3] Let Gf = (V,E, σ, µ) be a fuzzy graph. The strength of
a path P (v1, v2, . . . , vn) is defined as minµ(vi, vi+1) : i = 1, 2, ..., n− 1. The
maximum strengths of all paths between the vertices v1 and v2 in Gf is called
the strength of connectedness between the vertices v1 and v2 and it is denoted
as CONNGf

(v1, v2) or µ∞(v1, v2).

4. Power fuzzy graphs

Definition 4.1. Let Gf = (V,E, σ, µ) be a fuzzy graph of a graph G = (V,E).
The power fuzzy graph of Gf is defined as Gf

k= (V,Ek, σ, µk) where Ek =
E ∪ E∗, for any non-adjacent vertices u, v ∈ V in Gf there exists uv ∈ E∗

such that l(u, v) ≤ k where l is the length from u to v and k > 1 provided
min(σ(u)k, σ(v)k) ≤ µk(u, v) ≤ min(σ(u)k−1, σ(v)k−1). Gf

2 is called the
square of power fuzzy graph, and Gf

3 is called the cube of power fuzzy graph.

Remark 4.1. For k = 1, the power fuzzy graph Gf
k is a crisp fuzzy graph.

Example 4.2. Consider the fuzzy graph Gf
1 in figure 2, which is a given fuzzy

graph and satisfying the conditions of power fuzzy graph. Gf
2 in figure 3, is

formed by adding edges u1u3 and u2u4 to the existing edges u1u2, u2u3 and u3u4

of Gf
1, since l(u1, u3) = l(u2, u4) = 2 and l(u1, u2) = l(u2, u3) = l(u3, u4) = 1.
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Edge Interval Edge membership value

(u1, u2) [0.09, 0.3] µ2(u1, u2) = 0.2

(u2, u3) [0.04, 0.2] µ2(u2, u3) = 0.04

(u3, u4) [0.04, 0.2] µ2(u3, u4) = 0.08

(u1, u3) [0.04, 0.2] µ2(u1, u3) = 0.1

(u2, u4) [0.09, 0.3] µ2(u2, u4) = 0.2

Table 1. Edge membership values of Gf
2

Similarly, Gf
3 in figure 4, is formed by adding a new edge u1u4 to the existing

edges u1u2, u2u3, u3u4, u1u3 and u2u4 of Gf
2, since l(ui, uj) ≤ 3, where i, j =

1, 2, 3, 4 and i ̸= j.

Edge Interval Edge membership value

(u1, u2) [0.027, 0.09] µ3(u1, u2) = 0.05

(u2, u3) [0.008, 0.04] µ3(u2, u3) = 0.02

(u3, u4) [0.008, 0.04] µ3(u3, u4) = 0.01

(u1, u3) [0.008, 0.04] µ3(u1, u3) = 0.09

(u2, u4) [0.027, 0.09] µ3(u2, u4) = 0.03

(u1, u4) [0.125, 0.25] µ3(u1, u4) = 0.15

Table 2. Edge membership values of Gf
3

Figure 2. Power fuzzy graph Gf
1

Figure 3. Gf
2 - Power fuzzy graph of Gf

1
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Figure 4. Gf
3 - Power fuzzy graph of Gf

2

Definition 4.3. The power fuzzy graph Gf
k is called Total Power Fuzzy Graph

Tf
k where each vertex is adjacent to all other vertices. The number of edges

incident to a vertex is denoted by e(Tf
k) and the maximum k value referred as

diameter is denoted by km.

Example 4.4. Consider Gf
k= (V,E, σ, µk) where k = 1, 2, 3 as in the Figure

4. Here no further edge can be added in Gf
3 since every vertex is adjacent to

all other vertices. Therefore, Gf
3 is the total power fuzzy graph.

Note 4.1. For a trivial graph, km = 1

Note 4.2. For any integer n and decimal number x,⌈x⌉+ n = ⌈x+ n⌉

Remark 4.2. For a power fuzzy graphGf
k= (V,Ek, σ, µk), µk(u, v) ≤ µ(k−1)(u, v)

where u, v ∈ V and k > 2.

Proposition 4.5. For a path power fuzzy graph Gf
k of n vertices, km =

e(Tf
k) = n− 1, where n > 1.

Proof. Proof by induction method. Let km be denoted as km(n) for n vertices.
When n = 2, km(2) = 1.

Figure 5. Gf
1 of 2-path graph

When n = 3, km(3) = km(2) + 1 = 2.

(a) (b)

Figure 6. Gf
1 and Gf

2 of 3-path graph
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Assume that, the statement is true for n-1, (i.e.) km(n−1) = km(n−2)+1 =
n−2. Hence, we have km(n) = km(n−1)+km(1) = n−2+1 = n−1. Similarly,
e(Tf

k)(n) = n− 1.
□

Proposition 4.6. For cycle power fuzzy graph Gf
k of n vertices, km = ⌈ (n−1)

2 ⌉,
e(Tf

k) = n− 1, where n > 1.

Proof. Proof by induction method. Let km be denoted as km(n) for n vertices.

Case 1: n is even, km = ⌈ (n−1)
2 ⌉

n = 2, km(2) = ⌈ 1
2⌉ = 1

n = 4, km(4) = km(2) + 1 = ⌈ 3
2⌉ = 2

Assume that, the statement is true for n− 2, (i.e.) km(n− 2) = km(n− 4)+1 =

⌈ (n−3)
2 ⌉.

Hence, we have km(n) = km(n− 2) + km(2) = ⌈ (n−3)
2 ⌉+ 1 = ⌈ (n−1)

2 ⌉.
Case 2: n is odd, km = (n−1)

2
n = 3, km(3) = 1
n = 5, km(5) = 4

2 = 2

n = 7, km(7) = 6
2 = 3

Assume that, the statement is true for n− 2, (i.e.) km(n− 2) = (n−3)
2 .

Hence, we have km(n) = km(n − 2) − km(3) + km(5) = (n−1)
2 . Therefore, in

general km = ⌈ (n−1)
2 ⌉ for n vertices. Also, e(Tf

k) = n− 1 is true. □

Definition 4.7. Let Gf
k = (V,E, σ, µk) be a power fuzzy graph. The distance

of any path (x1, x2, . . . , xn) denoted as P with distinct vertices and n > 2 of

Gf
k is defined as Df

k(x1, x2, ..., xn) =

n−1∑
i=1

µk(xi, xi+1).

Example 4.8. Consider the path (u1, u3, u4) of Gf
3= (V,E3, σ, µ3) in the Fig-

ure 4. Then the distance is Df
k(u1, u3, u4) = 1.

Proposition 4.9. Let P be any path in power fuzzy graph Gf
k such that P

exists ∀k, then the distance of P in Gf
k+1 is less than or equal to the distance

of P in Gf
k, for k > 2.

Proof. Consider Gf
k = (V,Ek, σ, µk), a power fuzzy graph with n > 2 ver-

tices {x1, x2, . . . , xn}. Let {P1, P2, . . . Pm} be set of all paths from x1 to xn

in Gf
2. Consider a path P from the set in Gf

2 then P exists ∀Gf
k, k >

2.Let the distance of P in Gf
k+1 and the distance of P in Gf

k be denoted
as Dp

k+1 and Dp
k respectively. Let (xi, xi+1) be any edge in P. By the Remark

3.1.2, we get µk (xi, xi+1) ≤ µk−1 (xi, xi+1). Therefore,
∑n−1

i=1 µk+1 (xi, xi+1) ≤∑n−1
i=1 µk (xi, xi+1) and hence Dk+1

p ≤ Dk
p . □

Theorem 4.10. Every Power fuzzy graph is a fuzzy graph, but converse need
not be true.
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Proof. Let Gf
k = (V,Ek, σ, µk) be a power fuzzy graph, where Ek is the set of

edges in Gf
k and µk is the set of corresponding membership values set. Also,

note that in fuzzy graph any edge (x, y), the membership value µ(x, y) lies be-
tween [0,min(σ(x), σ(y))]. For any k, consider the edge (x, y) in Gf

k with the
membership value which satisfies the condition min

(
σ(x)k, σ(y)k

)
≤ µk(x, y) ≤

min
(
σ(x)k−1, σ(y)k−1

)
.

Case 1: If σ(x) = σ(y) = 0 or if σ(x) = 0 and σ(y) > 0, then µk(x, y) = 0.
Since µk(x, y) ∈ [0,min(σ(x), σ(y))], Gf

k is a fuzzy graph.
Case 2: If σ(x) > 0, σ(y) > 0 and σ(x) > σ(y), then
min(σ(x)k−1, σ(y)k−1) = σ(y)k−1 and min(σ(x)k, σ(y)k) = σ(y)k. Hence µk(x, y) ∈
[σ(y)k, σ(y)k−1] ⊂ [0,min(σ(x), σ(y))]. Therefore, Gf

k is a fuzzy graph.
Conversely, let Gf = (V,E, σ, µ) be the fuzzy graph and consider an edge
(x, y) ∈ E. If µ(x, y) lies between

[
min

(
σ(x)k, σ(y)k

)
,min

(
σ(x)k−1, σ(y)k−1

)]
for k > 1, then Gf is a power fuzzy graph. Suppose µ(x, y) lies between(
0,min

(
σ(x)k, σ(y)k

))
or

(
min

(
σ(x)k−1, σ(y)k−1

)
,min(σ(x), σ(y))

)
for k > 1,

then Gf is not a power fuzzy graph. Hence every Gf need not be a power fuzzy
graph. □

Example 4.11. The graph in Figure 4 satisfies the condition of fuzzy graph,
(i.e.) µ(u, v) ≤ minσ(u), σ(v), ∀u,v ∈ V . But does not satisfy the condition of
power fuzzy graph.

Figure 7. Fuzzy graph, not a Gf
2 Power fuzzy graph

Proposition 4.12. For every connected power fuzzy graph Gf
k with k > 1 and

n > 2 vertices, there exist a cycle.

Proof. Consider a power fuzzy graph, Gf
k= (V,E, σ, µk).

Case 1: Assume that Gf
1 contains a cycle, then for all power fuzzy graphs for

k > 1 there exists a cycle.
Case 2: Let Gf

1 be a power fuzzy graph of n > 2 vertices without any cycle.
Then there exists only one path between any two vertices in an acyclic graph.
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Consider the two non-adjacent vertices in Gf
1 whose length k ≤ 2, then the two

vertices are joined by an edge in Gf
2. Since Gf

2 contains a cycle, there exist a
cycle ∀Gf

k. □

Theorem 4.13. Let Gf
k = (V,Ek, σ, µk) be a power fuzzy graph. Then the

strength for any path P in Gf
2 is greater than or equal to strength of the path

P in Gf
k where k > 2.

Proof. Consider a path P in Gf
2 then P exists ∀Gf

k and let (x1, x2, . . . , xn)
be the path P . Suppose xn−1 xn ∈ E2 is the weakest edge of P in Gf

2, (i.e.)
µk(xn−1, xn) is the least membership value, then let us denote strength of the
path P as s2 = µk(xn−1, xn) in Gf

2. Since Gf
2 is a power fuzzy graph we have,

min(σ(xn−1)
2, σ(xn)

2) ≤ s2 ≤ min(σ(xn−1), σ(xn)) (1)

Similarly, let sk be the strength of the path P in Gf
k. Then

min(σ(xn−1)
k), σ(xn)

k) ≤ min(σ(xn−1)
k−1), σ(xn)

k−1) (2)

Therefore, by comparing the equations (1) and (2) we get, s2 ≤ sk. Hence the
theorem. □

Corollary 4.14. Let Gf
k = (V,Ek, σ, µk) be a power fuzzy graph. Then

CONNGf
2(a, b) ≥ CONNGf

k(a, b) where CONNGf
k(a, b) is the strength of

connectedness in Gf
k for a, b ∈ V .

Proof. Consider Gf
k = (V,Ek, σ, µk), a power fuzzy graph with n > 2 vertices

{x1, x2, . . . , xn}. Let {P1, P2, . . . Pm} be set of all paths from x1 to xn in Gf
2,

then Gf
k contains more paths including this set. Let s2

1, s2
2, . . . , s2

m be the
strengths of P1, P2, . . . , Pm respectively in Gf

2. Similarly let sk
1, s2k, . . . , sk

m be
the strengths of P1, P2, . . . , Pm respectively in Gf

k. By theorem 3.9 we have
s2

1 ≥ sk
1, s2

2 ≥ sk
2, . . . , s2

m ≥ sk
m, hence we get max

(
s2

1, s2
2, . . . , s2

m
)
≥

max
(
sk

1, sk
2, . . . , sk

m
)
. This proves that CONNGf

(a, b) ≥ CONNGf
(a, b). □

Corollary 4.15. Let Gf
k = (V,Ek, σ, µk) be a power fuzzy graph and let xy ∈

Ek. Then µ2(x, y) > µk(x, y) ∀k > 1 where µ2(x, y) ∈ Gf
2 and µk(x, y) ∈ Gf

k.

Remark 4.3. Order of Gf
k is equal for every k since the vertex membership

function remains constant ∀k.

5. Subgraphs of power fuzzy graphs

Definition 5.1. A graph Hf
k = (Vh, Ehk, τ, vk) is called Power fuzzy subgraph

of Gf
k = (V,Ek, σ, µk) if Vh ⊆ V and Ehk ⊆ Ek where Ek contains the edges

which are incident with vertices in Vh such that τ(u) = σ(u),∀u ∈ Vh and
vk(u, v) = µk(u, v),∀(u, v) ∈ Ek.

Definition 5.2. A graph Hf
k = (V,Ek, τ, vk) is called Partial power fuzzy sub-

graph ofGf
k = (V,Ek, σ, µk) if τ(u) ≤ σ(u),∀u ∈ V and vk(u, v) ≤ µk(u, v),∀(u, v) ∈

Ek.
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Definition 5.3. A partial fuzzy subgraph Hf
k = (V,Ek, τ, vk) is called Span-

ning power fuzzy subgraph of Gf
k = (V,Ek, σ, µk) if τ(u) = σ(u) ∀u ∈ V .

Definition 5.4. A graph Hf
k = (V,Ehk, σ, vk) is called Least power fuzzy

subgraph of Gf
k if Ehk has edges whose µk values lie between

[
σk
l , σ

k−1
l

]
such

that Ehk ⊂ Ek where σl is the least vertex membership value.

Figure 8. Total power fuzzy graph Gf
3 of Tadpole graph

T (3, 2)

Figure 9. Least power fuzzy subgraph Hf
3 of Tadpole graph

T (3, 2)

Lemma 5.5. The Least power fuzzy subgraph Hf
k has all the edges incident to

the vertices with σl value of Gf
k,∀k > 0.

Proof. Let Gf
k = (V,Ek, σ, µk) be a power fuzzy graph and let vertex u ∈ V

has the least membership value σl. Then the edges incident with vertex u will
have membership values between

[
σl

k, σk−1
l

]
. Since Hk

f is the least power fuzzy
graph, it has the edges with such µk values. □

Corollary 5.6. Let number of edges incident to σl of Gf
k be denoted by el.

Then the least power fuzzy subgraph Hf
k has at least el edges.

Example 5.7. Consider the total power fuzzy graph Gf
3 in figure 8. Here,

σl = 0.3 and el = 4. The total number of edges in the least power fuzzy
subgraph Hf

3 in figure 9 is 5.
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6. Special cases of power fuzzy graph

Definition 6.1. The power fuzzy graph Gf
k = (V,Ek, σ, µk) where Ek = E ∪

E∗, for any non-adjacent vertices u, v ∈ V in G there exist uv ∈ E∗ such that
l(u, v) ≤ k where l is the length from u to v and k > 1 provided µk(u, v) =
min

(
σ(u)k−1, σ(v)k−1

)
is called Maximal power fuzzy graph.

Definition 6.2. The power fuzzy graph Gf
k = (V,Ek, σ, µk) where Ek = E ∪

E∗, for any non-adjacent vertices u, v ∈ V in G there exist uv ∈ E∗ such that
l(u, v) ≤ k where l is the length from u to v and k > 1 provided µk(u, v) =
min

(
σ(u)k, σ(v)k

)
is called Minimal power fuzzy graph.

Definition 6.3. The power fuzzy graph Gf
k = (V,Ek, σ, µk) where Ek = E ∪

E∗, for any non-adjacent vertices u, v ∈ V in G there exist uv ∈ E∗ such that
l(u, v) ≤ k where l is the length from u to v and k > 1 provided µk(u, v) =
min(σ(u)k,σ(v)k)+min(σ(u)k−1,σ(v)k−1)

2 is called Median power fuzzy graph.

Remark 6.1. For a power fuzzy graph Gf
k = (V,Ek, σ, µk) which is either

maximal or minimal or median then, µk(u, v) < µk−1(u, v) where u, v ∈ V and
k > 2.

Lemma 6.4. Let the values of σ(u), ∀u ∈ V in Gf
1 has only one decimal place.

i In a maximal power fuzzy graph Gf
k with k > 2, the number of decimal

places of µk values are k − 1
ii In a minimal power fuzzy graph Gf

k with k > 2, the number of decimal
places of µk values are k.

iii In a median power fuzzy graph Gf
k with k > 2 and when σ(u) = 0.x where

x is even, the number of decimal places of µk values are k similarly when
σ(u) = 0.y where y is odd, the number of decimal places of µk values are
k + 1.

Lemma 6.5. Let Gf
k = (V,Ek, σ, µk) be the Maximal power fuzzy graph, then

strength of any path in Gf
1 and Gf

2 are equal.

Proof. Consider a path P {v1, v2, . . . , vn} in Gf
2, then Gf

1 contains the same

path. Let s1 and s2 be the strengths of path P inGf
1 andGf

2 respectively. Since
Gf

1, the Maximal power fuzzy graph is a crisp fuzzy graph the µ1 values for every
edge takes the minimum membership value of the corresponding two vertices.
For Gf

2 the edge membership values are defined as µ2(u, v) = min(σ(u), σ(v)).
Hence µ1(u, v) = µ2(u, v)∀(u, v) ∈ Gf

2. This implies s1 = s2. Hence the
proof. □

Lemma 6.6. Let Gf
k be either Maximal or Minimal power fuzzy graph, then

for k > 2, Size
(
Gf

2
)
> Size

(
Gf

k
)
.

Proof. Consider a Gf
k = (V,Ek, σ, µk) which is either maximal or minimal

power fuzzy graphs ∀k > 1. By the Remark 5.4, we have µk(u, v) < µk−1(u, v),∀k >
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1 for u, v ∈ V such that u ̸= v. Then µ3(u, v) < µ2(u, v), µ4(u, v) < µ3(u, v),
and so, on. This implies µ2(u, v) > µ3(u, v) > µ4(u, v) . . . > µk(u, v). Hence

µ2(u, v) > µk(u, v) and
∑

∀(u,v)∈E2

µ2(u, v) <
∑

∀(u,v)∈Ek

µk(u, v). Therefore Size(G
2
f ) >

Size(Gf
k). □

Corollary 6.7. The Least power fuzzy subgraph Hf
k of Maximal and Minimal

power fuzzy graphs has only the edges incident with vertices having σl value of
Gf

k,∀k > 1.

Proof. Consider Gf
k be Maximal power fuzzy graph and let there exist only

one vertex, say u with σl value. Then µk(u, v) = σl
k−1 where (u, v) ∈ Ek,∀v ∈

V − {u}. Hence
[
σl

k, σl
k−1

]
̸⊂

[
σ(v)k, σ(v)k−1

]
. Since the least power fuzzy

subgraph has the edges, whose values lie between
[
σl

k, σl
k−1

]
, the proof is com-

plete. Similarly, when Gf
k is a Minimal power fuzzy graph the statement is

true. □

7. Application

The concept of power fuzzy graph can be used in the road maps to find better
destinations and the fastest routes to reach them. Considering a particular type
of destinations in a location as vertices, the flaws in each destination regarding
quality, popularity, facility, speciality, availability etc. can be viewed as vertex
membership values. The membership values of edges(roads) are assigned accord-
ing to the flaw values of vertices and distances, average traffic flow, road safety,
etc. Hence the decision maker can find the way to reach the destination faster
and safer accordingly by using the power fuzzy graph model.

Figure 10. Shopping complexes in and around Trichy (Cour-
tesy: Google Maps)
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Figure 11. Total power fuzzy graph Gf
2 of five shopping com-

plex

Let A, B, C, D and E be five shopping complexes connected by roadways con-
sidered as edges. By total power fuzzy graph model, we can find all the possible
routes from each complex to the rest of the complexes.
According to the necessary and essential requirements of the buyer, brand, rate,
quality, customer’s reviews, the flaw values of vertices are calculated by the
methods of performance analysis [28]. The edge membership values are calcu-
lated in Table 6.1 based on the interval computed from the vertex membership
values, distance, route, road safety and travel time.

Edge Interval Edge membership value

e1 [0.04, 0.2] µ2(e1) = 0.09

e2 [0.04, 0.2] µ2(e2) = 0.1

e3 [0.04, 0.2] µ2(e3) = 0.07

e4 [0.04, 0.2] µ2(e4) = 0.05

e5 [0.25, 0.5] µ2(e5) = 0.25

e6 [0.16, 0.4] µ2(e6) = 0.2

e7 [0.09, 0.3] µ2(e7) = 0.15

e8 [0.16, 0.4] µ2(e8) = 0.25

e9 [0.09, 0.3] µ2(e9) = 0.2

e10 [0.09, 0.3] µ2(e10) = 0.1

Table 3. Edge membership values of Gf
2
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Destinations Minimum path distance Minimum path

A to E 0.05 A, e4, E

E to D 0.12 E, e4, A, e3, D

D to B 0.16 D, e3, A, e1, B

B to C 0.19 B, e1, A, e2, C

Table 4. Path traced from A to C using minimum path dis-
tance.

Therefore, by Figure11 the first complex to be visited is A, if the requirement
is not in A, then visit E, and so on. Hence the order to visit the complex is A, E,
D, B and C. The path from one destination to another is traced by calculating
minimum distances which is given in the Table 4.
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