• Title/Summary/Keyword: Fuzzy mapping

Search Result 258, Processing Time 0.026 seconds

FUNDAMENTAL STABILITIES OF THE NONIC FUNCTIONAL EQUATION IN INTUITIONISTIC FUZZY NORMED SPACES

  • Bodaghi, Abasalt;Park, Choonkil;Rassias, John Michael
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.729-743
    • /
    • 2016
  • In the current work, the intuitionistic fuzzy version of Hyers-Ulam stability for a nonic functional equation by applying a fixed point method is investigated. This way shows that some fixed points of a suitable operator can be a nonic mapping.

EXISTENCE THEOREMS FOR FIXED FUZZY POINTS WITH CLOSED α-CUT SETS IN COMPLETE METRIC SPACES

  • Cho, Yeol-Je;Petrot, Narin
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.115-124
    • /
    • 2011
  • In this paper, some fuzzy fixed point theorems for fuzzy mappings are established by considering the nonempty closed $\alpha$-cut sets. Some importance observations are also discussed. Our results clearly extend, generalize and improve the corresponding results in the literatures, which have given most of their attention to the class of fuzzy sets with nonempty compact or closed and bounded $\alpha$-cut sets.

The Design of Fuzzy Controller Based on Genetic Optimization and Neurofuzzy Networks

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.653-665
    • /
    • 2010
  • In this study, we introduce a neurofuzzy approach to the design of fuzzy controllers. The development process exploits key technologies of Computational Intelligence (CI), namely, genetic algorithms (GA) and neurofuzzy networks. The crux of the design methodology deals with the selection and determination of optimal values of the scaling factors of fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out. Next, we form a nonlinear mapping for the scaling factors, which are realized by GA-based neurofuzzy networks by using a fuzzy set or fuzzy relation. The proposed approach is applied to control nonlinear systems like the inverted pendulum. Results of comprehensive numerical studies are presented through a detailed comparative analysis.

Development of the Fuzzy Expert System for the Reinforcement of the Tunnel Construction (터널 시공 중 보강공법 선정용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river, This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Fuzzy K-Nearest Neighbor Algorithm based on Kernel Method (커널 기반의 퍼지 K-Nearest Neighbor 알고리즘)

  • Choi Byung-In;Rhee Frank Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • 커널 함수는 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(FKKNN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상 시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과를 분석한다.

  • PDF

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

The Design Methodology of Fuzzy Controller by Means of Evolutionary Computing and Fuzzy-Set based Neural Networks

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and Fuzzy-Set based Neural Networks (FSNN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out by using GAs, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based FSNN. The developed approach is applied to a nonlinear system such as an inverted pendulum where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

  • PDF

Properties of Triangle-Shaped Fuzzy Membership Function (삼각 퍼지 멤버쉽함수의 특성)

  • 이규택;이장규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • Fuzzy membership functions are some kinds of mapping function for the fuzzification and the defuzzification. Triangle-shaped fuzzy membership functions are widely used in fuzzy controller, for it is easy to implement. In these membership functions, it is known that narrower fuzzy sets permit finer control near the operating point than that far from the operating point. $Supp{\acute{o}}se$ we have a membership function with narrower triangle near zero and wider triangle far from zero. The membership function will make fine control when small input is given and rough control at large input. Therefore the performance of the controller with that membership function will be enhanced. This paper presents how the width of triangle base in the fuzzy membership function has influence on the output using geometrical approaches.

  • PDF

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.