• 제목/요약/키워드: Fuzzy logic controller design

검색결과 450건 처리시간 0.024초

유전 알고리듬을 이용한 퍼지 제어기의 최적화 (Optimization of Fuzzy Logic Controller Using Genetic Algorithm)

  • 장욱;손유석;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1158-1160
    • /
    • 1996
  • In this paper, the optimization of fuzzy controller using genetic algorithm is studied. The fuzzy controller has been widely applied to industries because it is highly flexible, robust, easy to implement, and suitable for complex systems. Generally, the design of fuzzy controller has difficulties in determining the structure of the rules and the membership functions. To solve these problems, the proposed method optimizes the structure of fuzzy roles and the parameters of membership functions simultaneously in so off-line method. The proposed method is evaluated through computer simulations.

  • PDF

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

연료분사식 자동차엔진의 퍼지가변구조 제어시스템 (Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines)

  • 남세규;유완석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

풍력발전단지의 효율적 운영을 위한 퍼지로직 기반 주파수 제어기 설계 (A Design for a Fuzzy Logic based Frequency Controller for Efficient wind Farm Operation)

  • 김세윤;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.186-192
    • /
    • 2014
  • Recently wind energy penetration into power systems has increased. Wind power, as a renewable energy source, plays a different role in the power system compared to conventional power generation units. As long as only single and small wind power units are installed in the power system, wind power does not influence power system operation and can easily be integrated. However, when wind power penetration reaches a significantly high level and conventional power production units are substituted, the impact of wind power on the power system becomes noticeable and must be handled. The connection of large wind turbines and wind farms to the grid has a large impact on grid stability. The electrical power system becomes more vulnerable to and dependent on wind energy production, and therefore there is an increased concern about the large wind turbines impact on grid stability. In this work, a new type of fuzzy logic controller for the frequency control of wind farms is proposed and its performance is verified using SimWindFarm toolbox which was developed as part of the Aeolus FP7 project.

반응표면분석법을 이용한 퍼지제어기 설계 (Design of a Fuzzy Logic Controller Using Response Surface Methodology)

  • 이세헌
    • 한국지능시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.591-597
    • /
    • 1999
  • 플랜트 모델이나 경허에 근거하여 설계된 퍼지제어기를 실제 플랜트에 적용할 경우 무델링 오차와 플랜트에 대한 관련지식의 부족으로 만족할 만한 제어결과를 나타내지 못할 경우가 있다. 이 경우 제어성능을 향상시키기 위해 제어기의 제어인자를 다시 조정하여야 하고 이조정과정은 시행착오방법으로 수행되기 때문에 많은 시간과 비용을 필요로한다. 이런문제점을 해결하기 위해 본연구에서는 반응표면분석법을 이용하여 퍼지제어기를 설계한, 체계적이고 효과적인 방법을 제안한다. 첫단계에서는 모델링 모차를 포함하고 있는 기준 플랜트 모델에 대해 최적화 알고리즘을 이용하여 제어인자의 초기 최적조건을 결정한다. 다음 단계에선 반응표면분석법을 이용하여 제어인자의 최종 최적조건을 결정한다. 제안된 방법의 타당성을 보이기 위해 모의실험을 수행하였다.

  • PDF

진화프로그래밍을 이용한 퍼지 신경망 지능 제어기 설계에 관한 연구 (A Study on design of Fuzzy neural network Intelligence controller using Evolution Programming)

  • 이상부;임영도
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.143-153
    • /
    • 1997
  • At the on-line control method FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the initialized value is excellent. The fuzzy controller can do a proper control, though it doesn't know the mathematical model of the system or the parameter value. But to make the control rule of the fuzzy controller through an expert's experiance has a changes of the control system, the control rule is fixed, it can't adjust to the environment changes of the control system, the controller output value has a minute error and it can't convergence correctly to the desired value[1][2]. There are many ways to eliminate the minute error[3][4][5], but in this paper suggests EP-FNNIC(Fuzzy Neurla Network Intelligence Controller) intelligence controller which combines FLC with NN(Neural Network) and EP(Evolution Programming). The output characteristics of EP-FNNIC controller will be compared and analyzed with FLC. It will be showed that this EP-FN IC controller converge correctly to the desirable value without any error. The convergence speed, overshoot, rising time, error of steady state of controller of these two kinds also will be compared.

  • PDF

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

AGV용 퍼지 상호 결합 제어기 설계 (A Design of Fuzzy-Cross Coupling Controller for AGV)

  • 정갑균;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.522-524
    • /
    • 1998
  • In this paper, the cross-coupling controller with fuzzy logic for AGV is developed, Cross-coupling control directly minimizes orientation' error by coordinating the motion of the two drive wheels and uses PI controller for compensation. But, the transient response of PI controller results in deviation from trajectory. The Fuzzy Cross-coupling controller enhances transient performance without steady-state error. The performance of the above controller is demonstrated by simulation and is compared with that of PI controller.

  • PDF

Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement

  • Rohani, Ahmad;Tirtashi, M. Reza Safari;Noroozian, Reza
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.734-742
    • /
    • 2011
  • In this paper a robust method is presented for the combined design of STATCOM and Power System Stabilizer (PSS) controllers in order to enhance the damping of the low frequency oscillations in power systems. The combined design problems among PSS and STATCOM internal ac and dc voltage controllers has been taken into consideration. The equations that describe the proposed system have been linearized and a Fuzzy Logic Controller (FLC) has been designed for the PSS. Then, the Particle Swarm Optimization technique (PSO) which has a strong ability to find the most optimistic results is employed to search for the optimal STATCOM controller parameters. The proposed controllers are evaluated on a single machine infinite bus power system with the STATCOM installed in the midpoint of the transmission line. The results analysis reveals that the combined design has an excellent capability in damping a power system's low frequency oscillations, and that it greatly enhances the dynamic stability of power systems. Moreover, a system performance analysis under different operating conditions and some performance indices studies show the effectiveness of the combined design.