• Title/Summary/Keyword: Fuzzy logic controller design

Search Result 450, Processing Time 0.033 seconds

Design of Fuzzy Logic System for the Steam Generator Water Level Control of Nuclear Power Plants (원전 증기발생기 수위제어를 위한 퍼지 논리 시스템 설계)

  • Song, Un-Ji;Kwan, Dae-Hwan;Zheng, Bin;Yoo, Seog-Hwan;Choi, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.328-330
    • /
    • 2005
  • Most of the water level controllers of the actual plant are PID controllers. But they have limitations in appling for tracking the set point and getting rid of disturbances, so there are some defects to apply in the actual ground even though many research works represented the resolution to solve it. In this paper, we design a fuzzy logic system (FLS) for controlling the steam generator water level in nuclear power plants. Some computer simulations reveal similar performance with the conventional PID controller.

  • PDF

Design and Implementation of Fuzzy Controller with Robest Performance for DC-CD Converters (DC-DC 컨버터를 위한 강인한 성능을 가지는 퍼지제어기의 설계 및 구현)

  • 이선근;권오석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.531-538
    • /
    • 1999
  • This paper proposes a fuzzy logic controller(FLC) for DC-DC converters in order to obtain good l perfonnances that can not be achieved by linear control tc'Chniques in the presence of wide parameter v variations. 'While the standard controller uses error and derivative of e$\pi$or, the proposed controller uses state v variables. Such method is ve$\pi$ efficient in case of DC-DC converters and can guarantee both stable s small-signal responses and improved large signal responses. The presented approach method is general and c can be applied to any dc-dc converter topologies. Through the simulations of booster, we verify the pro[Xlsed C control tc'Chnique can give a satisfactory perfonnance.

  • PDF

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

The development of fuzzy reasoning tool for the support design of servo system (서보 제어계 설계지원을 위한 퍼지추론 TOOL의 개발)

  • 노창주;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.72-78
    • /
    • 1995
  • The diffusion of fuzzy logic techniques into real applications requires specific software supports which save development time and reduce the programming effort. But we has been lack of a tool devoted to support the design of fuzzy controllers. In this paper, on the basis of the general fuzzy set and .alpha.-cut set decomposition of fuzzy sets, a set of fuzzy reasoning tool(FRT) devoted to support the design of fuzzy dontroller for servo systems is developed. The major features of this tool are: 1) It supports users to analyze fuzzy ingerence status based on input deta and expected results by three-D graphic display. 2) It supports users to prepare input data and expected result. 3) It supports users to tuned scaling factor of membership functions, rules and fuzzy inference. The paper shows how the suggested design tools are suitable to give a consistent answer to the tuning of fuzzy control system. This FRT is expected to exert good performance and devoted to support which the design of fuzzy controller is illustrated in the servo systems.

  • PDF

Analysis of Steady State Error on Simple FLC (단순 FLC의 정상상태오차 해석)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

Lyapunov-Based Fuzzy Control Scheme for Switched Reluctance Motor Drives

  • Safavian L.;Filizadeh S.;Emadi A.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.400-403
    • /
    • 2001
  • In this paper, the classical Lyapunov synthesis method for designing controllers is extended to fuzzy logic. This control technique is then applied to the design of a novel tracking controller for reluctance motor drives. The main features of the method are small rule base, simplicity of construction, and low cost. The proposed controller has been simulated for a model case. In addition, its dynamic performances have been shown to be satisfactory. Capabilities of the proposed technique in controlling the highly nonlinear systems of reluctance motors with much simplicity are also verified.

  • PDF

Design of fuzzy logic controller using genetic algorithms for the flexible manipulator (Flexible manipulator를 위한 유전 알고리즘을 이용한 퍼지 제어기 설계)

  • 허남건;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1808-1811
    • /
    • 1997
  • A position control algorithm for a flexible manipulato is stuudied. The proposed algorithm is based on a fuzzy theroy with a Steady State Genetic Algorithm(SSGA). The conventional fuzzy methods need expert's knowledges or human experiences. The SSGA, which is one of the optimization algorithms, tunes automatically the input-output membership parameters and fuzzy rules. The computer simulation is presented ot illustrate the approaches. Finally we applied a fuzzy theory with a SSGA to aposition control of a flexible manipulator.

  • PDF

Design of hybrid-type fuzzy controller for stabilizing molten steel level in high speed continuous casting (연주 탕면레벨 안정화를 위한 하이브리드형 퍼지제어기 설계)

  • 이덕만;권영섭;이상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.67-67
    • /
    • 2000
  • In this paper, a hybrid type fuzzy controller is proposed to maintain molten steel level stable and reliable manner in high speed continuous casting regardless of various disturbances such as casting speed change, tundish weight variation, 치ogging/undoning of SEN(Submerged Entry Nozzle), periodic bulgings, etc. To accomplish this purpose, hardware filter and software filer are carefully designed to eliminate high frequency noise and to smooth input signals from harsh environments. In order to minimize the molten steel level variations from various disturbances the controller uses hybrid type control term: fuzzy logic term, proportional term, differential term and nonlinear feedback compensation tenn. The proposed controller is applied tn commercial mini-mill plant and shows considerable improvement in minimizing the molten steel variation.

  • PDF