• Title/Summary/Keyword: Fuzzy logic algorithm

Search Result 959, Processing Time 0.027 seconds

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

Auto-Generation of Fuzzy Rule Base Using Genetic Algorithm (유전 알고리즘을 이용한 퍼지 규칙 베이스의 자동생성)

  • 박세희;김용호;심귀보;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.60-68
    • /
    • 1992
  • Fuzzy logic rule based controller has many desirable advantages, whih are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying/nonlinear system, it is not easy to construct the fuzzy logic rules which need the knowledge of and expert. In this paper, an approach by which the logic control rules can be auto-generated using the genetic algorithm that is known to be very effective in the optimization problem will be proposed and the effectiveness of the proposed approach will be verified by computer simulation of the 2 d.o.f. planner robot.

  • PDF

Evoluationary Design of a Fuzzy Logic Controller For Multi-Agent Robotic Systems

  • Jeong, ll-Kwon1;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • It is an interesting area in the field of artifical intelligence to find an analytic model of cooperative structure for multiagent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to find the fuzzy logic controller seems to be promising.

  • PDF

An Analysis of the Evolution of a Fuzzy Logic Controller using Evolutionary Activity (진화활동성을 이용한 퍼지 제어기의 진화 분석)

  • 이승익;조성배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.113-116
    • /
    • 2001
  • This paper analyzes the evolutionary process of a fuzzy logic controller using evolutionary activity. An evolutionary algorithm is commonly used to find solutions for given problems. However, little has been done on the analysis of the evolutionary pathways to the optimal solutions. This paper uses a genetic algorithm to construct a fuzzy logic controller for a mobile robot and applies evolutionary activity to measure the adaptability quantitatively. Evolutionary activity can be defined as the rate at which useful genetic innovations are absorbed in the population. By measuring the evolutionary activities, we will show quantitatively that the optimal fuzzy logic controller is not from other genetic phenomena like chance or necessity, but from the adaptability to a given encironment.

  • PDF

Evolutionary Design of a Fuzzy Logic Controller for Multi-Agent Systems

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.507-512
    • /
    • 1998
  • It is an interesting area in the field of artificial intelligence to and an analytic model of cooperative structure for multi-agent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent co-operative behavior: A modified genetic algorithm was applied to automating the discovery of a fuzzy logic controller jot multi-agents playing a pursuit game. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to and the fuzzy logic controller seems to be promising.

  • PDF

Torque Ripple Minimization for Switched Reluctance Motors Using a Fuzzy Logic and Sliding Mode Control (퍼지 이론과 슬라이딩모드 제어를 이용한 스위치드 릴럭턴스 전동기의 토크리플 저감)

  • Yoon, Jae-Seung;Kim, Dong-Hee;Shin, Hye-Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1384-1392
    • /
    • 2014
  • This paper presents a torque ripple reduction algorithm for the switched reluctance motor drives using the fuzzy logic and the sliding mode control. A turn-on angle controller based on the fuzzy logic determines the optimal turn-on angle. In addition, a sliding mode torque control (SMTC) methods reduces torque ripples instantaneously in the commutation region. The proposed algorithm does not require complex system models considering nonlinear magnetizing or demagnetizing periods of the phase current. According to the rotor speed and torque, the proposed controller changes the turn-on angle and reference torque instantaneously until the torque ripples are minimized. The simulation and experimental results verify the validity of minimizing the torque ripple performance.

Self-Organization of Fuzzy Rule Base Using Genetic Algorithm

  • Park, Sae-Hie;Kim, Yong-Ho;Choi, Young-Keel;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.881-886
    • /
    • 1993
  • Fuzzy logic rule-based controller has many desirable advantages, which are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying and nonlinear system, it is not easy to construct the fuzzy logic rules which usually need the knowledge of an expert. In this paper, an approach in which the logic control rules can be self-organized using genetic algorithm will be proposed and the effectiveness of the proposed method will be verified by computer simulation of the 2 d.o.f. planar robot manipulator.

  • PDF

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth;Ngamroo Issarachai;Runggeratigul Suwan;Tantaswadi Prinya
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2006
  • This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

A Study on the Optimal Design of Fuzzy Logic Controller (퍼지제어기의 최적 설계에 관한 연구)

  • 노기갑;김성호;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.50-54
    • /
    • 1997
  • In general, the design of fuzzy logic controller has difficulties in the acquisition of expert's knowledge. So, some methods that can optimize the parameters for fuzzy logic controller automatically without expert knowledge was provided. Recently, tuning method for fuzzy logic controller using genetic algorithm(GA) were proposed in many papers. However, those are tuning methods for a part or some part of fuzzy logic controller. In this paper, we proposes auto tuning method for the whole part of tuzzy logic controller, such as parameters of membership functions for antecedence and consequence parts, rule base, scaling factor and the number of rule. Finally, second order dead time plant is provided to show the advantages of the proposed method.

  • PDF