• Title/Summary/Keyword: Fuzzy differential equation

Search Result 39, Processing Time 0.021 seconds

Controllability of the nonlinear Fuzzy Integro-Differential Equations on EnN

  • Kwun Young-Chel;Park Dong-Gun;Ahn Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.621-625
    • /
    • 2005
  • In this paper we study the controllability for the nonlinear fuzzy integro-differential equations on $E_N^n$ by using the concept of fuzzy number of dimension n whose values are normal, convex, upper semicontinuous and compactly supported surface in $R^n$. $E_N^n$ the set of all fuzzy numbers in $R^n$ with edges having bases parallel to axis $X_1,\;X_2, ... , X_n$.

A continuous solution of the heat equation based on a fuzzy system

  • Moon, Byung-Soo;Hwang, In-Koo;Kwon, Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • A continuous solution of the Dirichlet boundary value problem for the heat equation $u_t$$a2u_{xx}$ using a fuzzy system is described. We first apply the Crank-Nicolson method to obtain a discrete solution at the grid points for the heat equation. Then we find a continuous function to represent approximately the discrete values at the grid points in the form of a bicubic spline function (equation omitted) that can in turn be represented exactly by a fuzzy system. We show that the computed values at non-grid points using the bicubic spline function is much smaller than the ones obtained by linear interpolations of the values at the grid points. We also show that the fuzzy rule table in the fuzzy system representation of the bicubic spline function can be viewed as a gray scale image. Hence, the fuzzy rules provide a visual representation of the functions of two variables where the contours of different levels for the function are shown in different gray scale levels

On the Derivation of TSK Fuzzy Model for Nonlinear Differentical Equations (비선형 미분방정식의 TSK 퍼지 모델 유도에 관하여)

  • 이상민;조중선
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.720-725
    • /
    • 2001
  • Derivation of TSK fuzzy model from nonlinear differential equation is fundamental issue in the field of theoretical fuzzy control. The method which does not yield affine local differential equations at off-equilibrium points is proposed in this paper. A prototype TSK fuzzy model which has triangular membership functions for linguistic terms of the antecedent part is derived systematically. And then GA is used to modify the membership functions optimally. Simulation results show the validity of the proposed method.

  • PDF

Observability for the nonlinear fuzzy neutral functional differential equations (비선형 퍼지 함수 미분 방정식에 대한 관측가능성)

  • Lee, C.K.;Y.C. Kwun;Park, J.R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.337-340
    • /
    • 2001
  • In this paper, we consider the observability conditions for the following nonlinear fuzzy neutral functional differential equations : (equation omitted), where x(t) is state function on E$\_$N/$\^$2/, u(t) is control function on E$\_$N/$\^$2/ and nonlinear continuous functions f:J C$\_$0/ E$\_$N/$\^$2/, k:J C$\_$0/ E$\_$N/$\^$2/ are satisfies global Lipschitz conditions.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

THIRD ORDER THREE POINT FUZZY BOUNDARY VALUE PROBLEM UNDER GENERALIZED DIFFERENTIABILITY

  • Prakash, P.;Uthirasamy, N.;Priya, G. Sudha
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.791-805
    • /
    • 2014
  • In this article, we investigate third order three-point fuzzy boundary value problem to using a generalized differentiability concept. We present the new concept of solution of third order three-point fuzzy boundary value problem. Some illustrative examples are provided.

A Survey on the Fuzzy Control Systems with Learning/Adaptation Capability (학습/적응력을 갖는 퍼지제어시스템들에 관한 고찰)

  • 김용태;이연정;이승하;정태신;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.11-35
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.