• Title/Summary/Keyword: Fuzzy control rules

Search Result 654, Processing Time 0.022 seconds

Optimal Fuzzy Controller Design Method using the Genetic Algorithm (유전자 알고리즘을 이용한 최적의 퍼지제어기 설계방식)

  • 손동설;이용구;엄기환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.363-371
    • /
    • 1999
  • In this paper proposes the optimal fuzzy controller design method using the genetic algorithm. Proposed method is that fuzzy rules and input - output scaling factors of the fuzzy controller are determined by using genetic algorithm that is very effectively in the optimization problem. The optimal fuzzy rules of servo system uses the fitness function which are the performance index in fuzzy controller. In order to verify excellent control performances of the proposed control method, we compare the control performance and characteristics about the proposed control method with a conventional fuzzy control method through a lot of simulations and experiments with one link manipulator.

  • PDF

Model-free Control based on Neural Networks and Fuzzy Systems (신경망 및 퍼지 시스템에 의한 모델없는 제어방식)

  • Kong, Seong-Gon;Park, Chung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.473-475
    • /
    • 1992
  • This paper compares performance of neural and fuzzy truck backer-upper control systems. Conventional controllers require a mathematical model of how outputs depend on inputs. Neural and fuzzy control systems offer a key advantage over conventional control systems. They are model-free controllers. Neural networks learn a control process by examples (training samples). Fuzzy systems directly encode designer's experience as IF-THEN rules. For robustness test, we gradually removed training samples for the neural controller, and fuzzy rules for the fuzzy system. The errors increased laster in the neural controller than in the fuzzy system.

  • PDF

Design of Fuzzy Controller Using Parasitic Co-evolutionary Algorithm (기생적 공진화 알고리즘을 이용한 퍼지 제어기 설계)

  • 심귀보;변광섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1071-1076
    • /
    • 2004
  • It is a fuzzy controller that it is the most used method in the control of non-linear system. The most important part in the fuzzy controller is a design of fuzzy rules. Many algorithm that design fuzzy rules have proposed. And attention to the evolutionary computation is increasing in the recent days. Among them, the co-evolutionary algorithm is used in the design of optimal fuzzy rule. This paper takes advantage of a schema co-evolutionary algorithm. In order to verify the efficiency of the schema co-evolutionary algorithm, a fuzzy controller for the mobile robot control is designed by the schema co-evolutionary algorithm and it is compared with other parasitic co-evolutionary algorithm such as a virus-evolutionary genetic algorithm and a co-evolutionary method of Handa.

Design of RBF Neural Network Controller Based on Fuzzy Control Rules (퍼지 제어규칙을 기반으로한 RBF 신경회로망 제어기 설계)

  • Choi, Jong-Soo;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.394-396
    • /
    • 1997
  • This paper describes RBF network controller based on fuzzy control rules for intelligent control of nonlinear systems. The proposed scheme is derived from the functional equivalence between RBF networks and fuzzy inference systems. The design procedure of the proposed scheme is realized by first transforming the fuzzy control rules into the parameters of RBF networks. The optimized RBF network controller is then performed through the gradient descent learning mechanism to an error function. The proposed method is rigorously tested using a nonlinear and unstable nonlinear system. Simulation is performed to demonstrate the feasibility and effectiveness of the proposed scheme.

  • PDF

Design of Self-Orgnizing Fuzzy Controller for Real-Time Dynamic Control of AC1 Robot (AC1 로봇의 실시간 동적제어를 위한 자기구성 퍼지 제어기설계)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.125-130
    • /
    • 1999
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

A New Modeling Approach to Fuzzy-Neural Networks Architecture (퍼지 뉴럴 네트워크 구조로의 새로운 모델링 연구)

  • Park, Ho-Sung;Oh, Sung-Kwun;Yoon, Yang-Woung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.664-674
    • /
    • 2001
  • In this paper, as a new category of fuzzy-neural networks architecture, we propose Fuzzy Polynomial Neural Networks (FPNN) and discuss a comprehensive design methodology related to its architecture. FPNN dwells on the ideas of fuzzy rule-based computing and neural networks. The FPNN architecture consists of layers with activation nodes based on fuzzy inference rules. Here each activation node is presented as Fuzzy Polynomial Neuron(FPN). The conclusion part of the rules, especially the regression polynomial, uses several types of high-order polynomials such as linear, quadratic and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership functions are studied. It is worth stressing that the number of the layers and the nods in each layer of the FPNN are not predetermined, unlike in the case of the popular multilayer perceptron structure, but these are generated in a dynamic manner. With the aid of two representative time series process data, a detailed design procedure is discussed, and the stability is introduced as a measure of stability of the model for the comparative analysis of various architectures.

  • PDF

State Recognition and Prediction of a Batch Culture Using Fuzzy Rules

  • Fukuda, Tsunenobu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1098-1101
    • /
    • 1993
  • The purpose of this work is to build a fuzzy model of a batch culture for a process control. The process is highly nonlinear system with large delay. This paper presents two methods of modeling the process behavior. One is a method of recognizing them by fuzzy rules that are contracted by the pattern analysis in consideration of skilled operators' way. The other is a method of predicting them by approximate linear models and fuzzy rules by statistic analysis.

  • PDF

Fuzzy Logic Control With Predictive Neural Network

  • Jung, Sung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.285-289
    • /
    • 1996
  • Fuzzy logic controllers have been shown better performance than conventional ones especially in highly nonlinear plants. These results are caused by the nonlinear fuzzy rules were not sufficient to cope with significant uncertainty of the plants and environment. Moreover, it is hard to make fuzzy rules consistent and complete. In this paper, we employed a predictive neural network to enhance the nonlinear inference capability. The predictive neural network generates predictive outputs of a controlled plant using the current and past outputs and current inputs. These predictive outputs are used in terms of fuzzy rules in fuzzy inferencing. From experiments, we found that the predictive term of fuzzy rules enhanced the inference capability of the controller. This predictive neural network can also help the controller cope with uncertainty of plants or environment by on-line learning.

  • PDF

Experimental Studies of a Fuzzy Controller Compensated by Neural Network for Humanoid Robot Arms (다관절 휴머노이드 상체 로봇의 제어를 위한 신경망 보상 퍼지 제어기 구현 및 실험)

  • Song, Deok-Hui;Noh, Jin-Seok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.671-676
    • /
    • 2007
  • In this paper, a novel neuro-fuzzy controller is presented. The generic fuzzy controller is compensated by a neural network controller so that an overall control structure forms a neuro-fuzzy controller. The proposed neuro-fuzzy controller solves the difficulty of selecting optimal fuzzy rules by providing the similar effect of modifying fuzzy rules simply by changing crisp input values. The performance of the proposed controller is tested by controlling humanoid robot arms. The humanoid robot arm is analyzed and implemented. Experimental studies have shown that the performance of the proposed controller is better than that of a PID controller and of a generic fuzzy PD controller.

An Adaptive Fuzzy Controller Using Fuzzy Nerual Networks

  • Takeshi-Furuhashi;Takashi-Hasegawa;Horikawa, Shin-ichi;Yoshiki-Uchikawa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.769-772
    • /
    • 1993
  • This paper presents and adaptive fuzzy controller using fuzzy neural networks(FNNs). The adaptive controller uses two FNNs. One FNN is used to identify a fuzzy model of controlled object. The other FNN is used as a fuzzy controller. The fuzzy controller is designed with the linguistic rules of the fuzzy model. The response of the designed control system is checked with a linguistic response analysis proposed by the authors. An adaptive tuning of the control rules of the FNN controller is made possible utilizing the fuzzy model. Simulations using nonlinear controlled objects were done to verify the proposed control system.

  • PDF