• 제목/요약/키워드: Fuzzy control rules

검색결과 654건 처리시간 0.027초

Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators (구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어)

  • Jang, Jin-Su;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF

Fuzzy Control of Servo System by manipulate membership function (멤버쉽함수의 조정에 의한 Servo System의 Fuzzy 제어)

  • 이오걸;송호신;김이곤;심영진;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.117-122
    • /
    • 1998
  • A servo system requires faster and more accurate dynamic reponses. Generally a PD control is mainly used to obtain the precision, and in the other hand a fuzzy control to improve the transient response and to cope with the nonlinearity of systems. Recently hybrid control, which is attempted to combine the advantages of PD control and a Fuzzy control was proposed, but this technique requires complicate design procedures. Therefore in this paper, designed on the Fuzzy controller with a various series rules, width of membership functions. And also it was showed to have the excellent adaptive performances against disturbances and the usefulness of this controller from the results of simulations.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller for Chattering Reduction (채터링 감소를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계)

  • Seo, Sam-Jun;Kim, Dong-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제14권6호
    • /
    • pp.752-758
    • /
    • 2004
  • In this paper, we proposed an adaptivefuzzy sliding control algorithm using gradient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satistfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

Linearization of T-S Fuzzy Systems and Robust Optimal Control

  • Kim, Min-Chan;Wang, Fa-Guang;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.702-708
    • /
    • 2010
  • This paper proposes a novel linearization method for Takagi.sugeno (TS) fuzzy model. A T-S fuzzy controller consists of linear controllers based on local linear models and the local linear controllers cannot be designed independently because of overall stability conditions which are usually conservative. To use linear control theories easily for T-S fuzzy system, the linearization of T-S fuzzy model is required. However, The linearization of T-S fuzzy model is difficult to be achieved by using existing linearization methods because fuzzy rules and membership functions are included in T-S fuzzy models. So, a new linearization method is proposed for the T-S fuzzy system based on the idea of T-S fuzzy state transformation. For the T-S fuzzy system linearized with uncertainties, a robust optimal controller with the robustness of sliding model control(SMC) is designed.

Fuzzy rule-based Hand Motion Estimation for A 6 Dimensional Spatial Tracker

  • Lee, Sang-Hoon;Kim, Hyun-Seok;Suh, Il-Hong;Park, Myung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.82-86
    • /
    • 2004
  • A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.

  • PDF

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.

Designing of Fuzzy Control Rules for Automatic Driving of A Model Car (모델차량의 자동운전을 위한 퍼지제어규칙의 설계)

  • Jeon, J.W.;Jeong, K.C.;Lee, D.H.;Lee, S.G.;Lee, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.967-969
    • /
    • 1996
  • This paper presents fuzzy control rules for automatically driving a model car. The model car has a two sensors. This sensors measure a road outline and get a distance between a model car and a road outline. A Fuzzy Logic Controller(FLC) bases on a knowledge of the human experience. A FLC designed successfully controls the model car. Simulations results verifies the validity of proposed algorithm.

  • PDF

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF