• 제목/요약/키워드: Fuzzy basis function network

검색결과 72건 처리시간 0.026초

Interval 제 2 종 퍼지 radial basis function neural network (Interval type-2 fuzzy radial basis function neural network)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Nonlinear Function Approximation by Fuzzy-neural Interpolating Networks

  • Suh, Il-Hong;Kim, Tae-Won-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1177-1180
    • /
    • 1993
  • In this paper, a fuzzy-neural interpolating network is proposed to efficiently approximate a nonlinear function. Specifically, basis functions are first constructed by Fuzzy Membership Function based Neural Networks (FMFNN). And the fuzzy similarity, which is defined as the degree of matching between actual output value and the output of each basis function, is employed to determine initial weighting of the proposed network. Then the weightings are updated in such a way that square of the error is minimized. To show the capability of function approximation of the proposed fuzzy-neural interpolating network, a numerical example is illustrated.

  • PDF

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method

  • Golafshani, Emadaldin M.;Pazouki, Gholamreza
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.419-437
    • /
    • 2018
  • The compressive strength of self-compacting concrete (SCC) containing fly ash (FA) is highly related to its constituents. The principal purpose of this paper is to investigate the efficiency of hybrid fuzzy radial basis function neural network with biogeography-based optimization (FRBFNN-BBO) for predicting the compressive strength of SCC containing FA based on its mix design i.e., cement, fly ash, water, fine aggregate, coarse aggregate, superplasticizer, and age. In this regard, biogeography-based optimization (BBO) is applied for the optimal design of fuzzy radial basis function neural network (FRBFNN) and the proposed model, implemented in a MATLAB environment, is constructed, trained and tested using 338 available sets of data obtained from 24 different published literature sources. Moreover, the artificial neural network and three types of radial basis function neural network models are applied to compare the efficiency of the proposed model. The statistical analysis results strongly showed that the proposed FRBFNN-BBO model has good performance in desirable accuracy for predicting the compressive strength of SCC with fly ash.

퍼지-신경망을 이용한 시간지연 공정 시스템에 대한 적응제어 기법

  • 최중락;곽동훈;이동익
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.994-998
    • /
    • 1996
  • We propose an approach to integrating fuzzy logic control with RBF(Radial Basis Function) networks and show how the integrated network can be applied to multivariable self-organizing and self-learning fuzzy controller. Using the hybrid learning algorithm. To investigate its usefulness and performance, this controller is applied to a time-delayed process system. Simulation results show good control performance and fast convergency in hybrid loaming method.

  • PDF

정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계 (Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation)

  • 박호성;진용하;오성권
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.