• 제목/요약/키워드: Fuzzy algorithm

검색결과 3,213건 처리시간 0.03초

Schema Co-Evolutionary Algorithm을 이용한 2-Layer Fuzzy Controller의 최적 설계 (Optimal Design of the 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm)

  • 심귀보;변광섭
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.228-233
    • /
    • 2004
  • 최근 들어, 다양하고 복잡한 기능을 갖는 로봇이 요구되고 있다. 그러나 이전의 알고리즘으로는 그러한 요구를 만족시킬 수 없다. 이러한 문제를 해결하기 위해, 본 논문에서는 다양한 입력과 출력을 다루는 경우에도 작은 개수의 퍼지 룰을 갖고, 효율적이고 강인하게 제어할 수 있는 2-Layer Fuzzy Controller를 소개한다. 그런데 퍼지 제어기에서의 중요한 문제점은 퍼지 룰 베이스를 어떻게 설계하는지에 달려 있다. 본 논문은 Schema Co-Evolutionary Algorithm을 이용하여 최적의 2-Layer Fuzzy Controller를 설계하는데, 이 Schema Co-Evolutionary Algorithm은 simple GA보다 더 빠르고 우수하게 최적해를 찾을 수 있다.

퍼지 simplex search 알고리듬을 이용한 동력 스크류 효율의 최적설계 (Optimum Design of Power Screw Efficiency by Fuzzy Simplex Search Algorithm)

  • 현창헌;이병기
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.19-28
    • /
    • 2002
  • The Nelder-Mead simplex algorithm has been one of the most widely used methods for the nonlinear unconstrained optimization, since 1965. Recently, the new algorithm, (so-called the Fuzzy Simplex Algorithm), with fuzzy logic controllers for the expansion, reflection and contraction process of this algorithm has been proposed. In this paper, this new algorithm is developed. And, the formulation for the optimum design of the power screw's efficiency is made. And then, the developed fuzzy simplex algorithm as well as the original one is applied to this optimum design problem. The Fuzzy simplex algorithm results in a faster convergence in this problem, as reported in other study, too.

  • PDF

GA-Fuzzy Algorithm에 의한 세탁기 모터의 제어 (Control of the Washing Machineos Motor by the GA-Fuzzy Algorithm)

  • 이재봉;김지현;박윤서;선희복
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.3-12
    • /
    • 1995
  • A controller utilizing fuzzy logic is developed to control the speed of a motor in a washing machine by choosing an appropriate phase. Due to the hardship imposed on obtaining a result from a relation established for inputs, present speed and present rate of speed, and ouput, a phase, of the system that can be tested against an experimental result, it is impossible to apply a genetic algorithm to fine-tune the fuzzy logic controller. To avoid this difficulty, a proper assumption that the parameters of an if-part of a primary fuzzy logic controller have a functional relationship with an error between computed values and experimental ones in made. Setting up of a fuzzy relationship between the parameters and the errors is then achieved through experimentally obtained data. Genetic Algorithm is then applied to this secondary fuzzy logic controller to verify the fuzzy logic. In the verification process, the primary fuzzy logic controller is used in obtaining experimental results. In this way the kind of difficulty in obtaining enough experimental values used to verify the fuzzy logic with genetic algorithm is gotten around. Selection of the parameters that would produce the least error when using the secondary fuzzy logic controller is done with applying genetic algorithm to the then-part of the controller. In doing so the optimal values for the parameters of the if-part of the primary fuzzy logic controller are assumed to be contained. The experimental result presented in the paper validates the assumption.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Optimal Control of Induction Motor Using Immune Algorithm Based Fuzzy Neural Network

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1296-1301
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy -neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

The implementation of the Multi-population Genetic Algorithm using Fuzzy Logic Controller

  • Chun, Hyang-Shin;Kwon, Key-Ho
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.80-83
    • /
    • 2003
  • A Genetic algorithm is a searching algorithm that based on the law of the survival of the fittest. Multi-population Genetic Algorithms are a modified form of genetic algorithm. Therefore, experience with fuzzy logic and genetic algorithm has proven to be that a combination of them can efficiently make up for their own deficiency. The Multi-population Genetic Algorithms independently evolve subpopulations. In this paper, we suggest a new coding method that independently evolves subpopulations using the fuzzy logic controller. The fuzzy logic controller has applied two fuzzy logic controllers that are implemented to adaptively adjust the crossover rate and mutation rate during the optimization process. The migration scheme in the multi-population genetic algorithms using fuzzy logic controllers is tested for a function optimization problem, and compared with other group migration schemes, therefore the groups migration scheme is then performed. The results demonstrate that the migration scheme in the multi-population genetic algorithms using fuzzy logic controller has a much better performance.

  • PDF

유전자 알고즘을 이용한 자동차 주행 제어기의 최적화 (Optimazation of Simulated Fuzzy Car Controller Using Genetic Algorithm)

  • 김봉기
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.212-219
    • /
    • 2006
  • 퍼지 논리 제어기(FLC : Fuzzy Logic Controller)를 사용할 때, 가장 중요한 것은 소속 함수의 범위를 정하는 것과 규칙의 형태를 결정하는 것이다. 소속 함수의 범위나 규칙의 형태는 자금까지 전문가가 임의로 정하는 방법을 사용하였다. 그러나 기존의 방법을 사용하면, 전문가의 주관적인 규칙과 소속 함수가 생성될 수 있고, 소속함수의 경우 최적의 범위를 정확히 예측하기 어려운 단점이 있다. 본 논문에서는 이런 단점을 보완하기 위해, 유전자 알고리즘을 사용함으로써 최적의 소속 함수와 규칙의 형태를 구하려 하였다. 제시하는 방법의 타당성을 검증하기 위해 자동차 주행 제어 문제에 적용시켜 보았다.

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권1E호
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF

모호수 연산을 적용한 네트워크 신뢰도 (Reliability Approach to Network Reliability Using Arithmetic of Fuzzy Numbers)

  • 김국
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권2호
    • /
    • pp.103-107
    • /
    • 2014
  • An algorithm to get network reliability, where each link has probability of fuzzy number, is proposed. Decomposition method and fuzzy numbers arithmetic are applied to the algorithm. Pivot link is chosen one by one from start node recursively at time of decomposition, and arithmetic of fuzzy complementary numbers is included at the same time. No criteria of pivot link selection and the recursive calculation make the algorithm simple.