• 제목/요약/키워드: Fuzzy State Feedback Control

검색결과 92건 처리시간 0.03초

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

T-S Model Based Robust Indirect Adaptive Fuzzy Control

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.211-214
    • /
    • 2002
  • In this paper, we propose a robust indirect adaptive fuzzy state feedback regulator based on Takagi-Sugeno fuzzy model. The proposed adaptive fuzzy regulator is less sensitive to singularity than the conventional one based on the feedback linearization method. Furthermore, the proposed control method is applicable to not only plants with a perfect model but also plants with an imperfect model, which causes uncertainties. We verify the global stability of the proposed method by using Lyapunov method. In order to support the achievement, the application of the proposed adaptive fuzzy regulator to the control of a nonlinear system under the external disturbance is presented and the performance was verified by some simulation result.

  • PDF

적응 퍼지 슬라이딩 모드 기법을 이용한 Series DC 모터의 속도제어 (A Speed Control of A Series DC Motor Using Adaptive Fuzzy Sliding-Mode Method)

  • 김도우;양해원;정기철;이효섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2292-2295
    • /
    • 2001
  • In this paper, The control problem for a series DC motor is considered to adaptive fuzzy sliding-mode control scheme. Based on a nonlinear mathematical model of a series connected DC motor, instead of the combination of a nonlinear transformation and state feedback(feedback linearization) reduces the nonlinear control design. To demonstrate its effectiveness, an experimental study of this controller is presented. Two sets of fuzzy rule bases are utilized to represent the equivalent control input with unknown system functions of the main target. The membership functions of the THEN-part, which is used to construct a suitable equivalent control of SMC, are changed according to the adaptive law. With such a design scheme, we not only maintain the distribution of membership functions over state space but also reduce computing time considerably.

  • PDF

곡예 로보트의 퍼지학습제어에 관한 연구 (A Study on the Fuzzy Learning Control of the Acrobatic Robot)

  • 김도현;오준호
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2567-2576
    • /
    • 1994
  • In this paper we propose a new method to determine the learning rates of fuzzy learning algorithm(FLA) in nonlinear MIMO system. The state feedback gains are used from the linearized system of the nonlinear MIMO system. Through this method, it is easy to determine the learing rates. And it is quarauteed the good convergence and confirmed the performance of FLA is better than that of linear controller(LC) through the simulation. Acrobatic robot system is selected as an example(one-input two-output system), and FLA is implemented through the experiment.

퍼지 모델을 위한 동적 상태 피드백 제어기 설계 (Dynamic State Feedback Controller Synthesis for Fuzzy Models)

  • 장욱;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.528-530
    • /
    • 1999
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex single input single output nonlinear systems. Firstly, the nonlinear system is represented by well-known Takagai-Sugeno (TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller usually is composed of two processes. One is to determine static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative of the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. One simulation example is given to show the effectiveness and feasibility of the proposed fuzzy controller design method.

  • PDF

시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어 (L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay)

  • 이동환;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.762-767
    • /
    • 2008
  • 본 논문에서는 TS 퍼지 모델로 표현되는 시간 지연 비선형 시스템에 대한 $L_{\infty}$ 이득 상태 제한 퍼지 제어기를 제안한다. 이 위해 먼저 TS 퍼지 모델을 이용하여 시간 지연 비선형 시스템을 모델링한다. 다음 이 퍼지 모델을 기본으로 $L_{\infty}$ 이득을 얻기위해 퍼지 상태 궤환 제어기를 설계한다. 마지막으로 $L_{\infty}$ 이득을 얻기 위한 충분조건을 유도한다. 충분조건은 선형 행렬 부등식의 형태로 공식화 한다. 마지막으로 몇 가지 예제를 통하여 제안된 제어기의 효율성을 증명한다.

Takagi-Sugeno Fuzzy Integral Control for Asymmetric Half-Bridge DC/DC Converter

  • Chung, Gyo-Bum
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권1호
    • /
    • pp.77-84
    • /
    • 2007
  • In this paper, Takagi-Sugeno (TS) fuzzy integral control is investigated to regulate the output voltage of an asymmetric half-bridge (AHB) DC/DC converter; First, we model the dynamic characteristics of the AHB DC/DC converter with state-space averaging method and small perturbation at an operating point. After introducing an additional integral state of the output regulation error, we obtain the $5^{th}$-order TS fuzzy model of the AHB DC/DC converter. Second, the concept of the parallel distributed compensation is applied to design the fuzzy integral controller, in which the state feedback gains are obtained by solving the linear matrix inequalities (LMIs). Finally, simulation results are presented to show the performance of the considered design method as the output voltage regulator and compared to the results for which the conventional loop gain method is used.

구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어 (Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators)

  • 장진수;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF

A TSK Fuzzy Controller for Underwater Robots

  • Kim, Su-Jin;Oh, Kab-Suk;Lee, Won-Chang;Kang, Geun-Taek
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.320-325
    • /
    • 1998
  • Underwater robotic vehicles (URVs) have been an important tool for various underwater tasks because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system becomes one of the most critical subsytems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. In this paper a new type of fuzzy model-based controller based on Takagi-Sugeno-Kang fuzzy model is designed and applied to the control of of an underwater robotic vehicle. The proposed fuzzy controller : 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule ; 2) can guarantee the stability of the closed-loop fuzzy system ; 3) is relatively easy to implement. Its good performance as well as its robustness to the change of parameters have been shown and compared with the re ults of conventional linear controller by simulation.

  • PDF

시변 지연이 있는 비선형 시스템에 대한 $H_{\infty}$ 퍼지 강인제어기 설계 (Static Output Feedback Robust $H_{\infty}$ Fuzzy Control of Nonlinear Systems with Time-Varying Delay)

  • 김택룡;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.379-381
    • /
    • 2004
  • In this paper, a robust $H_{\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H_{\infty}$ controllers are given in terms of linear matrix inequalities.

  • PDF