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Abstract

Underwater robotic vehicles (URVs) have been an
important tool for various underwater tasks because they
have greater speed, endurance, depth capability, and safety
than human divers. As the use of such vehicles
increases, the vehicle control system becomes one of
the most critical subsystems to increase autonomy of
the vehicle. The vehicle dynamics are nonlinear and
their hydrodynamic coefficients are often difficult to
estimate accurately. In this paper a new type of
fuzzy model-based controller based on Takagi-
Sugeno-Kang fuzzy model is designed and applied to
the control of an underwater robotic vehicle. The
proposed fuzzy controller: 1) is a nonlinear controller,
but a lincar state feedback controller in the
consequent of each local fuzzy control rule, 2) can
guarantee the stability of the closed-loop fuzzy
system; 3) is relatively easy to implement. Its good
performance as well as its robustness to the change
of parameters have been shown and compared with

the results of conventional linear controller by
simulation .
Keywords: URV, Fuzzy model, Fuzzy controller,

State feedback controller, Stability, Robustness.
1. Imtroduction

Underwater robotic vehicles are used for various
work assignments such as pipe-lining, inspection, data
collection, drill support, hydrography mapping,
construction, maintenance and repairing of undersea
equipment, etc. As the wuse of such vehicles
increases, the development of vehicles having greater
autonomy becomes highly desirable. The vehicle
control system is one of the most critical subsystems
to increase autonomy of the vehicle. As discussed by
many researchers[1.2], the wvehicle dynamics are
nonlinear and their hydrodynamic coefficients are
often difficult to estimate accurately. Furthermore,
some of work assignments often require the vehicle

to handle payloads of different shapes and weights.
The varying payloads during the operation change the
total vehicle mass as well as the centers of gravity
and buoyancy. Therefore, the conventional linear
controller such as PID may not be able to handle
these changes promptly and result in poor
performance.

In this paper we design a fuzzy model-based
controller to control an underwater wvehicle and
provide the superiority to the conventional linear
controller. Most fuzzy controllers in the literature
have been designed by linguistic rules without an
explicit model of the system. A major drawback of
this approach is a lack of systematic method for the
analysis and design of the fuzzy control system. In
this paper we use simple mathematical fuzzy models
of dynamic systems based on fuzzy sets and fuzzy
inference [3-5] in order to design a new type of
fuzzy controller. This fuzzy model consists of a
small set of fuzzy rules whose consequents are linear
equations, not fuzzy sets. This type of fuzzy model
1s often called Takagi-Sugeno-Kang (TSK) fuzzy
model. The advantage of this approach is that
analysis is simpler, and a model structure can often
be obtained with minimum modeling effort.[6-8]. We
deal with the TSK fuzzy mode! with constant terms
and present the design algorithm of fuzzy controller
based on the TSK fuzzy model. The proposed fuzzy
controller is basically a nonlinear controller and can
guarantec the stability of the overall fuzzy system.

2. Fuzzy Controller Based on TSK Fuzzy Model

In this section we suggest a fuzzy controller which
is based on the TSK fuzzy model and can guarantee
the stability of the closed-loop fuzzy system. The
TSK fuzzy controller have the same number of rules
and premises as those of the TSK fuzzy model. The
most important characteristic of the TSK fuzzy
controller is that its consequents are linear state
feedback controllers in the structure.
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2.1. State Space Description of TSK Fuzzy Model
The TSK fuzzy model describing the behavior of a

single-input  single-output continuous dynamic system

can be constructed from the following fuzzy rules:

R': if zy s FY, 29 is F},-, z,, is F' then

n, . ) . n—-1,, .
*QI{— =aytaiytay+t-- +a,,~—“ 1 tblu

dt dt

(1
Choosing the state variables x,=y, xzx%,
n—1

Xy —Z-fn,,l yiclds the state space description
of the form

R': IF z is FY, z, is F},>, 2, 1s F*,

THEN x'=A'x+ b'u+ d @
y= CcX
where

0 1 0 0 0 0
Slo o 1 0] ol o
At: E E E y b: : y dl: E
0 0 0 1 0 0
lay a; a3 - ay) | 1] | ao

c=[10 - 0]

The state vector x is inferred as
k= 2w %/ Twx o
1= =

wi(z) = [ Fitz) @
where £ is the number of rules and F(z;) is the

membership value of z; in the fuzzy set Fj The

consistency of the two descriptions (1) and (3) can
be seen easily.

2.2. Design of TSK Fuzzy
Placement

The TSK fuzzy controller is a nonlinear controller
and is composed of the TSK fuzzy mles whose
consequents are state feedback controllers. We can
arbitrarily assign all poles of the closed-loop fuzzy
system to any desirable locations so that all states
asymptotically converge to zero as f - 00O,
Furthermore, the fuzzy controller can guarantee the
stability of the controlled system.

The i-th rule of the fuzzy controller corresponding
to that of the fuzzy model is given by

C': IF z is F, 2z s Fy, -, 2, is Fi, 5)
THEN u'=— g' x+gj
' gln] is a 1xmn feedback

Controller by Pole

where g'=[ gl g
vector of constant gains and g is a scalar quantity.

The method of inferring the control input # from
the fuzzy control rule (5) is slightly different from
that of inferring the fuzzy model (3).

Theorem 1: The control input z is inferred from

the consistency condition
ﬁlwi(z) b'u= ﬁlw"(z) b'u ©)
= =
if the feedback gain vector gi and scalar quantity
& in (15) are determined such that
0=A'- b’ g ()
b'gg=— 4’ ®)
where @ is a state (ransition matrix whose
eigenvalues are the desired poles of the closed-loop

fuzzy system. Then every equilibrium state of the
closed-loop fuzzy system is asymptotically stable..

Proof:

The closed-loop fuzzy system with the controller
and consistency condition (5) - (8) can be expressed
as follows:

k= L & 3 wi(2)

3 w2 (A x+ d)+ > wiz) b

g‘ w'(2)

=D wi(2) (A= b’ g")/ Z]]wi(Z)

1=

\
=0 x

I

&)
It is obvious that the structure of the closed-loop
fuzzy system (9) is a lincar system. If we choose
the state transition matrix @ as a stable matrix whose
all the eigenvalues have negative real parts, every
equilibrium state of (9) is asymptotically stable.

O

2.3. Integral Action on TSK Fuzzy Controller

If there exists the modeling error between the
fuzzy model and the process or the process has
constant disturbances, the steady-state error occurs. In
this case an integral action is required to eliminate
the steady-statc error. The state space design
approach will not produce the integral action unless a
special step is introduced. We define the augmented
x; through

state vector x, with an integral state

Xy
X

to write the fuzzy model (2) as an augmented state
space description

Xo= (10)

} where x;=y= c¢x
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R': IF z is Fy, zy1s F3,-, z,, is F},

THEN x,=A. x,+ b, u+ d,
VY= C, X,
(11)
where
i [0 ¢ i_[ 0 i 0
All [O AI]! bd [ bl]! da [ dz]:
c,={0 c]

The fuzzy controller for the augmented fuzzy model
can be designed by using the same method as
described in (5) - (8).

3. Fuzzy Model and Controller for Underwater
Vehicle

Underwater vehicle model can be described by the
following vector equation:

M(x) x+A( x) x+ h(x)=F (10
x € R® is position and orientation in the vehicle
coordinates; Me R®® is an inertia matrix (rigid body
inetia + added mass), AeR®® includes all the
nonlinear dynamic terms with inertia velocity terms
associated with the forces and torques exerted on the
vehicle by fluid motion, drag forces and torque, h & RS
is a vector inchuding gravity, buoyancy and other
distutbance terms, and is a vector representing the forces

and torques g F € RPenerated by the thruster forces.

where

3.1 Dynamic Model of ODIN

In this paper we use the dynamic model for the
depth and pitch motion of the Omni-Directional
Intelligent Navigator (ODIN) developed at the
Autonomous Systems Laboratory of the University of
Hawaii[8]. ODIN's dynamic equations for the depth
and pitch motion can be described as:

alm—z ) —mx, [w]
—amx, (I,—M_ )|t 4a
+[azzww |M _mch][w]+
mzq  mgld |l g
(o V—mg)cos 8 Z[BFZ]
[ (x.mg— x40 V)cos 0+ (z.mg— z,0V)sin f yT
(13)
where F, and 7T are the force and torque,
respectively. The depth z and angular displacement
g in global coordinates can be obtained by

integrating the following equation:

(=15 800]

The numerical values of the system parameters in

(14)

(13) are: m=145kg., z, =0.675, 1,=0.418,
M, =3.594, Zme=116.96, m,,=4.2034
oV=1421.65, £=9.8, «=0.305, #7=4.45,
y=1.35725, the center of gravity (x,.,z.)

=(0,0), the center of buoyancy (x,,z,) =(0,0).

3.2. TSK Fuzzy Model of ODIN

We obtained the TSK fuzzy models for the depth
and pitch motion described by (15) and (17). Fig. 1
and Fig. 2 show membership functions of the depth

motion with premise variables z and 4. and the

pitch motion with premise variable 19 respectively.
The fuzzy model of the depth motion consists of
four rules as follows:

Rl IF zis Viand 8 is T,

THEN z=al+ajz+aiz+ biF,+c'6
R IF z4s V, and O is T,

THEN z=at+alz+dbz+ b*F,+ 6
RY: IF zis Vyand 84 T,

THEN z=aj+alz+alz+ 6’F,+ 6
R IF zis Vyand 04s T

THEN z=aj+alz+asz+ b*F,+ "0

(15)
where

ay al a3 b

at at a3 bt | _

ag al a% b ¢

at al ai v}
—0.019 0.022 —0.009 0.094 —0.022
0.000 —0.010 —0.015 0.101 —0.028 (16)
0.003 0.032 —0.062 0.097 0.047
0.000 0.003 —0.023 0.101 0.012

The fuzzy model of the pitch motion with two rules
is described by

Ry : IF 8is O, THEN
B: Egl'f‘ _all@+ 22]9+ -bllT (17)
RY: IF §is O, THEN
292 202+ 2129+ _022 8+ leT
where
-1 —1 —1 =1
ag a a; by ]:
-2 =2 —2 T2
ag a; a; b2
0.000 0.000 —0.067 —0.315
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Fig. 1. Membership functions for the premise of
the fuzzy model of the depth motion with (a)

premise variable z and (b) premise variable §..

A Or1 Oz

1

f.
>

-0.00 0.007

8 (rad/s)
Fig. 2. Membership functions for the premise of
the fuzzy model of the pitch motion with premise

variable 6.

3.3. TSK Fuzzy Controller for ODIN

In this subsection we design the TSK fuzzy
controllers for the depth and pitch motion of ODIN
to track the desired trajectories, respectively. First, we
define the augmented state space description of the
consequent of the fuzzy model (15) of the depth
motion as follows:

. ., 010 0o1p . 0
R.: 00 1| z,+{0|F.+|0] (19
0 a; a; by d,
where 7=1,-",4, the augmented state vector
Za:[ 51 5 g] y 5 — Ry, 1——f2dt ZY
is the desired trajectory of the depth, and the scalar
quantity d'= af+ alz,+ab z,— 2,4+ c'6.

For this fuzzy model, the i-th rule of the TSK
fuzzy controller is designed as follows:
Ci: Fi= — g

z,+ 8 (10)

where the feedback gain vector g'=[g| g &3]

and the scalar quantity g6 are chosen as

1
g [ [1702.13 766.19 138.20
g |= |1584.16 712.77 128.56| i
g’ |1649.48 742.60 133.38]
g'l  11584.16 712.90 128.49

—d'/ b

(21
to assign the desired poles of the closed-loop fuzzy
system to —4+#4, —5.

The augmented state space description of the
consequent of the fuzzy model (17) of the pitch
motion is defined by

_ .o (001 0 0 _
Ry: 6.=10 0 1 6,+( 0 | T
0 a' a) b
0
+1 0 (22)
_dl
where 71=1,2, the augmented state vector

0.~ 8,087, 9= [va. 6, is the
desired trajectory of the pitch, and the scalar quantity
@= 't @'+ @' 6,6,

For this fuzzy model, the i-th rule of the fuzzy
controller is designed as follows:

Co: T'= — g 6.~ z'
the feedback gain

(23)
where vector

E’:[ ' Ezi g5 i] and the scalar quantity

Efoi are chosen as
g :[—228.57 —41.49 —509.94
2] | —228.57 —41.05 —507.94)"
g'=—d/ b' 24)
the desired poles of the closed-loop fuzzy
—4+4, —5.

to assign
system to

4. Simulation Results

Simulation studies were conducted on the depth
and pitch motion of the underwater vehicle ODIN.
For comparison study, the fuzzy control system and
PID control system were tested for two separate
cases: 1) Case 1 - ODIN with no addition of
payload; and 2) Case 2 - ODIN with addition in
payload of 5 kg which makes the total mass
m=150 kg and the center of gravity changes from
(2,2 =1(0,0) 0 (0.3,0) m.

We considered the desired vehicle motion with the
following four segments: 1) the vehicle goes down to
a desired deep depth as well as rotates; 2) the
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vehicle maintains the current position, 3) the vehicle
comes back to the original shallow depth and pitch
angle; 4) then the vehicle maintains the position.
This overall motion is a good representation of a
typical set of motions during the performance ot an
underwater  vehicle  surveying, sampling, and
maintenance tasks. Desired profiles for the depth and
pitch are shown in Fig. 3.

The PID controller used in the simulation can be

described as
z z
+ K 1 39
791 [ 3,

(7]~ 3] 5o
The PID gains are chosen as
_[60 0 {20 0 —[40 0

ke [o 60]' Ko [0 20]' = [o 40}
which provide reasonably better performance than any
other gains. It is known that the optimized selection
of PID pgains is critical for a PID controller to
produce good performances and requires much time.

Fig. 4 show simulation results of the PID
controller and the fuzzy controller for Case 1. Even
though the PID controller shows reasonable
performance, the fuzzy controller presents smaller
errors than the PID controller. Fig. 5 shows
simulation results for Case 2. Even though the PID
controller shown in Fig. 5(a) still maintains the
stability of the system, it shows larger errors due to
parameter change than Fig. 4(a). However, the results
shown in Fig. 5(b) with the fuzzy controller present
better performances than the PID controller.
Furthermore, when the fuzzy controller is used, there
is not much difference between Fig. 4(b) and Fig
5(b) except for the very first segment of the vehicle
motion.

5. Conclusions

A new type of fuzzy controller based on the TSK
fuzzy model was described. To our knowledge all of
previous works are focused on a special type of the
TSK fuzzy model with no constant term in the
consequent of each local fuzzy rule. This fact is a
strong assumption about modeling the system with
fuzzy sets and fuzzy inference. In our approach the
general form of the TSK fuzzy model was
considered including constant terms in the consequent
of the fuzzy rule. The TSK fuzzy controlier: 1) is a
nonlinear controller, but a lincar state feedback
controller in the consequent of each local fuzzy
control rule; 2) can guarantee the stability of the
closed-loop fuzzy system;, 3) is relatively easy to
implement. In this paper we also applied the TSK
fuzzy controller to the control of underwater robotic
vehicles since their dynamics are nonlinear and their
hydrodynamic coefficients are often difficult to
estimate accurately. The fuzzy model and fuzzy

controller of the underwater vehicle ODIN were
obtained with a few rules. Its good performance as
well as its robustness to the change of parameters
(inertia and the center of gravity) have been shown
and compared with the results of conventional linear
controller by simulation .
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