• Title/Summary/Keyword: Fuzzy Rules

Search Result 1,218, Processing Time 0.034 seconds

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

Characteristics of Fuzzy Inference Systems by Means of Partition of Input Spaces in Nonlinear Process (비선형 공정에서의 입력 공간 분할에 의한 퍼지 추론 시스템의 특성 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.48-55
    • /
    • 2011
  • In this paper, we analyze the input-output characteristics of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods to identify the fuzzy model for nonlinear process. And fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters are used for identification of fuzzy model and membership function is used as a series of triangular membership function. In the consequence part of the rules fuzzy reasoning is conducted by two types of inferences. The identification of the consequence parameters, namely polynomial coefficients, of the rules are carried out by the standard least square method. And lastly, we use gas furnace process which is widely used in nonlinear process and we evaluate the performance for this nonlinear process.

Generation of Efficient Fuzzy Classification Rules Using Evolutionary Algorithm with Data Partition Evaluation (데이터 분할 평가 진화알고리즘을 이용한 효율적인 퍼지 분류규칙의 생성)

  • Ryu, Joung-Woo;Kim, Sung-Eun;Kim, Myung-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 2008
  • Fuzzy rules are very useful and efficient to describe classification rules especially when the attribute values are continuous and fuzzy in nature. However, it is generally difficult to determine membership functions for generating efficient fuzzy classification rules. In this paper, we propose a method of automatic generation of efficient fuzzy classification rules using evolutionary algorithm. In our method we generate a set of initial membership functions for evolutionary algorithm by supervised clustering the training data set and we evolve the set of initial membership functions in order to generate fuzzy classification rules taking into consideration both classification accuracy and rule comprehensibility. To reduce time to evaluate an individual we also propose an evolutionary algorithm with data partition evaluation in which the training data set is partitioned into a number of subsets and individuals are evaluated using a randomly selected subset of data at a time instead of the whole training data set. We experimented our algorithm with the UCI learning data sets, the experiment results showed that our method was more efficient at average compared with the existing algorithms. For the evolutionary algorithm with data partition evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that evaluation time was reduced by about 70%. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Automatic Fuzzy Rule Generation by Simulating Human Knowledge Gathering Process (사람의 지식 축정과정 모사를 통한 자동 퍼지규칙의 생성)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.12-17
    • /
    • 1995
  • Fuzzy rules, developed by experts thus far, may be often inconsistent and incomplete. This paper proposes a new methodology for automatic generation of fuzzy rules which are nearly complete and not inconsistent. This is accomplished by simulating a knowledge gathering process of humans from control experiences. This method is simpler and more efficient than existing ones. It is shown through simulation that our method even generates better rules than those generated by experts, under fine tuned parameters.

  • PDF

Design of Hard Partition-based Non-Fuzzy Neural Networks

  • Park, Keon-Jun;Kwon, Jae-Hyun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.30-33
    • /
    • 2012
  • This paper propose a new design of fuzzy neural networks based on hard partition to generate the rules of the networks. For this we use hard c-means (HCM) clustering algorithm. The premise part of the rules of the proposed networks is realized with the aid of the hard partition of input space generated by HCM clustering algorithm. The consequence part of the rule is represented by polynomial functions. And the coefficients of the polynomial functions are learned by BP algorithm. The number of the hard partition of input space equals the number of clusters and the individual partitioned spaces indicate the rules of the networks. Due to these characteristics, we may alleviate the problem of the curse of dimensionality. The proposed networks are evaluated with the use of numerical experimentation.

Brain Magnetic Resonance Image Segmentation Using Adaptive Region Clustering and Fuzzy Rules (적응 영역 군집화 기법과 퍼지 규칙을 이용한 자기공명 뇌 영상의 분할)

  • 김성환;이배호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.525-528
    • /
    • 1999
  • Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.

  • PDF

Design of fuzzy rules for automatically driving car (퍼지 규칙을 이용한 자동운전에 관한 연구)

  • Park, Jong-Su;Lee, H.Y.;Jeong, K.C.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.122-125
    • /
    • 1997
  • This paper presents a design of fuzzy control rules to driving automobile automatically, three types of road are considered, such types are designated as Z-course, S-course, and Hat-course. Fuzzy control rules are designed for each type by combining human experience and engineering sense. Simulation are done for a mixed road containg three types mentioned above. Simulation results show the validity of suggested algorithm.

  • PDF

A Study on Sensitivity Analysis by Fuzzy Inference Rules Using Color and Location Information

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 2009
  • Human beings can represent state of mind such as psychological state, personality or emotional trouble by the pictures painted on one's own initiative. But in general, it is hard to understand a consulter's unconscious state through one's objective and intentional descriptions only. So one's psychological state and emotional trouble can be understood and cured by color and location information of objects drawn in one's picture. By this reason, a consultant can help and settle a consulter's growth stages of life and emotional trouble through treatment by pictures. In this paper, we proposed a method to find out state of sensitivity by analysis of color and location information represented in a picture and fuzzy inference rules. We applied the proposed method to the states of sensitivity from color information proposed by Alschuler and Hattwick and the psychological states from location information proposed by Grunwald. In the experimental results by the two applications, we verified the proposed sensitivity analysis method is efficient.

A Study on Dynamic Inference for a Knowlege-Based System iwht Fuzzy Production Rules

  • Song, Soo-Sup
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.55-74
    • /
    • 2000
  • A knowledge-based with production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a method to reflect the dynamic nature of a system when we make inferences with a knowledge-based system. This paper suggests a strategy of dynamic inference that can be used to take into account the dynamic behavior of decision-making with the knowledge-based system consisted of fuzzy production rules. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by the AHP(Analytic Hierarchy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with the Min operator, into a single DM for the rule. In this way, the importance of attributes of a rule, which can be changed from time to time, can be reflected in an inference with fuzzy production systems.

  • PDF

Comparison of Fuzzy Implication Operators using Automated Reasoning (자동화된 추론을 이용한 퍼지 조건연산자의 비교 분석)

  • 김용기
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.18-32
    • /
    • 1995
  • Fuzzy rules, developed by experts thus far, may be often inconsistent and incomplete. This paper proposes a new methodology for automatic generation of fuzzy rules which are nearly complete and not inconsistent. This is accomplished by simulating a knowledge gathering process of humans from control experiences. This method is simpler and more efficient than existing ones. It is shown through simulation that our method even generates better rules than those generated by experts, under fine tuned parameters.

  • PDF