• Title/Summary/Keyword: Fuzzy Production System

Search Result 115, Processing Time 0.025 seconds

Multistage Fuzzy Production Systems Modeling and Approximate Reasoning Based on Fuzzy Petri Nets (다단계 퍼지추론 시스템의 퍼지 페트리네트 모델링과 근사추론)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.84-94
    • /
    • 1996
  • In this work, a fuzzy petri net model for modeling a general form of fuzzy production system which consists of chaining fuzzy production rules and so requires multistage reasoning process is presented. For the obtained fuzzy petri net model, the net will be transformed into some matrices, and also be systematically led to an algebraic form of a state equation. Since it is fond that the approximate reasoning process in fuzzy systems corresponds to the dynamic behavior of the fuzzy petri net, it is further shown that the multistage reasoning process can be carried out by executing the state equation.

  • PDF

A Model with an Inference Engine for a Fuzzy Production System Using Fuzzy Petri Nets (Fuzzy Petri Nets를 이용한 퍼지 추론 시스템의 모델링 및 추론기관의 구현)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.30-41
    • /
    • 1992
  • As a general model of rule-based systems, we propose a model for a fuzzy production system having chaining rules and an inference engine associated with the model. The concept of so-called 'fuzzy petri nets' is used to model the fuzzy production system and the inference engine is designed to be capable of handling inexact knowledge. The fuzzy logic is adopted to represent vagueness in the rules and the certainty factor is used to express uncertainty of each rules given by a human expert. Parallel, inference schemes are devised by transforming Fuzzy Petri nets to matrix formula. Futher, the inference engine mechanism under the Mamdani's implication method can be desceribed by a simple algebraic formula, which makes real time inference possible.

  • PDF

A Fuzzy Modeling Approach for a Spray Drying Production Process

  • Aburas Hani Mohammad A.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.873-879
    • /
    • 2004
  • In all major industries ranging from powder industries and advanced ceramics, to the food and pharmaceutical manufacture powder industries, the main production process is the spray dryers. In this paper, a systematic approach is used and six rules are obtained for the basis of the fuzzy model. A fuzzy model is based on the past behavior of the target system and expected to be able to reproduce the behavior of the target system. The output of the developed fuzzy model shows, graphically and statistically, a high level of face validity. Therefore, it is concluded that the developed fuzzy model mimics the actual process and can be considered, with confidence, as a reliable model to study, analyze, and improve the existing process.

A Study on Dynamic Inference for a Knowlege-Based System iwht Fuzzy Production Rules

  • Song, Soo-Sup
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.55-74
    • /
    • 2000
  • A knowledge-based with production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a method to reflect the dynamic nature of a system when we make inferences with a knowledge-based system. This paper suggests a strategy of dynamic inference that can be used to take into account the dynamic behavior of decision-making with the knowledge-based system consisted of fuzzy production rules. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by the AHP(Analytic Hierarchy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with the Min operator, into a single DM for the rule. In this way, the importance of attributes of a rule, which can be changed from time to time, can be reflected in an inference with fuzzy production systems.

  • PDF

A Strategy of Dynamic Inference for a Knowledge-Based System with Fuzzy Production Rules (퍼지규칙으로 구성된 지식기반시스템에서 동적 추론전략)

  • 송수섭
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.81-95
    • /
    • 2000
  • A knowledge-based system with fuzzy production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a strategy to reflect the dynamic nature of real system when we make inferences with a knowledge-based system. This paper proposes a strategy of dynamic inferencing for a knowledge-based system with fuzzy production rules. The strategy suggested in this paper applies weights of attributes of conditions of a rule in the knowledge-base. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by AHP(Analytic Hierarcy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with MIN operator, into a single DM for the rule. In this way, overall DM for a rule changes depending on the importance of attributes of the rule. As a result, the dynamic nature of a real system can be incorporated in an inference with fuzzy production rules.

  • PDF

Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations (가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론)

  • Lee, Moo-Eun;Lee, Dong-Eun;Cho, Sang-Yeop
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론)

  • 조상엽;김기석
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.559-566
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval -valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner. This paper presents fuzzy Petri nets and proposes an interval-valued fuzzy backward reasoning algorithm for rule-based systems based on fuzzy Petri nets Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The algorithm we proposed generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The proposed interval-valued fuzzy backward reasoning algorithm can allow the rule-based systems to perform fuzzy backward reasoning in a more flexible and human-like manner.

  • PDF

Interval-valued Fuzzy Set Reasoning Using Fuzzy Petri Nets (퍼지 페트리네트를 이용한 구간간 퍼지집합 추론)

  • 조경달;조상엽
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.625-631
    • /
    • 2004
  • In general, the certainty factors of the fuzzy production rules and the certainty factors of fuzzy Propositions appearing in the rules are represented by real values between zero and one. If it can allow the certainty factors of the fuzzy production rules and the certainty factors of fuzzy propositions to be represented by interval-valued fuzzy sets, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more flexible manner(15). This paper presents a fuzzy Petri nets and proposes an interval-valued fuzzy reasoning algorithm for rule-based systems based on fuzzy Petri nets. Fuzzy Petri nets model the fuzzy production rules in the knowledge base of a rule-based system, where the certainty factors of the fuzzy Propositions appearing in the furry production rules and the certainty factors of the rules are represented by interval-valued fuzzy sets. The proposed interval-valued fuzzy set reasoning algorithm can allow the rule-based systems to perform fuzzy reasoning in a more flexible manner.

Knowledge Representation and Fuzzy Reasoning in the Level of Predicate Logic based on Fuzzy Pr/T Nets (퍼지 Pr/T 네트를 기반으로 하는 술어논리 수준의 지식표현과 퍼지추론)

  • 조상엽;이동은
    • Journal of Internet Computing and Services
    • /
    • v.2 no.2
    • /
    • pp.117-126
    • /
    • 2001
  • This paper presents fuzzy Pr/T nets to represent the fuzzy production rules of a knowledge-based system in the level of first-order predicate logic. The fuzzy Pr/T nets are fuzzy extension of the Pr/T nets. Based on the fuzzy Pr/T net, we propose a fuzzy reasoning algorithm. This algorithm is much closer to human intuition and reasoning than other methods because of using the proper belief functions according to fuzzy concepts in fuzzy production rules.

  • PDF

A Fault Diagnosis System of Glass Melting furnace Using A Fuzzy Export System (퍼지 전문가 시스템을 이용한 유리 용해로 이상 감시 시스템 구축 사례)

  • 문운철
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.63-74
    • /
    • 2002
  • This paper presents an application result of on-line fault diagnosis system for glass melting furnace using a fuzzy expert system. Operators maintain the furnace using the furnace Knowledge and experience, which directly influence the furnace and glass product. Firstly, knowledge and experience is achieved and analyzed to implement the furnace Knowledge and experience into fuzzy expert system. The acquired Knowledges determined as a crisp rule or a fuzzy rule to expect its characteristics. And, a linear regression is used as the input of fuzzy rule to consider the exact knowledge of human operator. The fuzzy expert system is implemented with G2 which is an on-line expert system tool of Gensym Co. The application to a production furnace of Samsung-Corning Co. in Suwon shows successful results of proposed fuzzy expert system.

  • PDF