• Title/Summary/Keyword: Fuzzy Probability

Search Result 227, Processing Time 0.026 seconds

Design and Performance evaluation of Fuzzy-based Framed Random Access Controller ($F^2RAC$) for the Integration of Voice ad Data over Wireless Medium Access Control Protocol (프레임 구조를 갖는 무선 매체접속제어 프로토콜 상에서 퍼지 기반의 음성/데이터 통합 임의접속제어기 설계 및 성능 분석)

  • 홍승은;최원석;김응배;강충구;임묘택
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.189-192
    • /
    • 2000
  • This paper proposes a fuzzy-based random access controller with a superimposed frame structure (F$^2$RAC) fur voice/data-integrated wireless networks. F$^2$RAC adopts mini-slot technique for reducing contention cost, and these mini-slots of which number may dynamically vary from one frame to the next as a function of the traffic load are further partitioned into two regions for access requests coming from voice and data traffic with their respective QoS requirements. And F$^2$RAC is designed to properly determine the access regions and permission probabilities for enhancing the data packet delay while ensuring the voice packet dropping probability constraint. It mainly consists of the estimator with Pseudo-Bayesian algorithm and fuzzy logic controller with Sugeno-type of fuzzy rules. Simulation results prove that F$^2$RAC can guarantee QoS requirement of voice and provide the highest throughput efficiency and the smallest data packet delay amongst the different alternatives including PRMA[1], IPRMA[2], and SIR[3].

  • PDF

ELINT Intra-pulse Modulation Recognition using Fuzzy Algorithm (퍼지 알고리즘을 이용한 전자정보의 펄스 내 변조 인식)

  • Kim, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.1986-1995
    • /
    • 2013
  • The ELINT system which derives intelligence from electromagnetic radiations plays an important role in modern electric warfares. Among radar characteristics inferred from the signals, intra-pulse modulation scheme is a useful feature to identify modern radars. This paper proposes the method to classify intra-pulse modulation schemes such as UM, PSK, BFSK, QFSK, LFM and NLFM based on the fuzzy algorithm. The proposed method defines fuzzy membership functions to characterize input signals, and then it calculates accordance rates for each modulation scheme with fuzzy inference rules. The experimental results show that the probability of correct recognition is more than 95% for SNR > 10dB.

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik;Ki, Ikjoong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

AED System using Fuzzy Rules (퍼지규칙을 이용한 AED 시스템)

  • Lee, HeeTack;Hong, YouSik;Lee, SangSuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.215-220
    • /
    • 2013
  • Recently, death number of heart attack in the world is increasing rapidly. Therefore, to solve these problem, it is trend that is making mandatory automatic defibrillator AED establishment to airport, school, at home. However, AED use in an emergency or equipment failure caused malfunctions if equipped with AED may even become obsolete. In this paper, in order to improve this problem, AED Simulator using the fuzzy simulation technique in comparison to existing methods Tilt ambient temperature conditions and in consideration of the conditions, self-diagnostics, error detection at the time to determine whether the development of intelligent simulation. Moreover, in this paper, it proved that fuzzy AED Simulation improved fault detection probability results 30% more than conventional method.

An Analysis of Human Reliability Represented as Fault Tree Structure Using Fuzzy Reasoning (Fault Tree구조로 나타낸 인간신뢰성의 퍼지추론적해석)

  • 김정만;이동춘;이상도
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.113-127
    • /
    • 1996
  • In Human Reliability Analysis(HRA), the uncertainties involved in many factors that affect human reliability have to be represented as the quantitative forms. Conventional probability- based human reliability theory is used to evaluate the effect of those uncertainties but it is pointed out that the actual human reliability should be different from that of conventional one. Conventional HRA makes use of error rates, however, it is difficult to collect data enough to estimate these error rates, and the estimates of error rates are dependent only on engineering judgement. In this paper, the error possibility that is proposed by Onisawa is used to represent human reliability, and the error possibility is obtained by use of fuzzy reasoning that plays an important role to clarify the relation between human reliability and human error. Also, assuming these factors are connected to the top event through Fault Tree structure, the influence and correlation of these factors are measured by fuzzy operation. When a fuzzy operation is applied to Fault Tree Analysis, it is possible to simplify the operation applying the logic disjuction and logic conjuction to structure function, and the structure of human reliability can be represented as membership function of the top event. Also, on the basis of the the membership function, the characteristics of human reliability can be evaluated by use of the concept of pattern recognition.

  • PDF

Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol (무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계)

  • Choi, Won-Seock;Kim, Eung-Ju;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

Incomplete Information Recognition Using Fuzzy Integrals Aggregation: With Application to Multiple Matchers for Image Verification

  • Kim, Seong H.;M. Kamel
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.28-31
    • /
    • 2003
  • In the present work, a main purpose is to propose a fuzzy integral-based aggregation framework to complementarily combine partial information due to lack of completeness. Based on Choquet integral (CI) viewed as monotone expectation, we take into account complementary, non-interactive, and substitutive aggregations of different sources of defective information. A CI-based system representing upper, conventional, and lower expectations is designed far handling three aggregation attitudes towards uncertain information. In particular, based on Choquet integrals for belief measure, probability measure, and plausibility measure, CI$\_$bi/-, CI$\_$pr/ and CI$\_$pl/-aggregator are constructed, respectively. To illustrate a validity of proposed aggregation framework, multiple matching systems are developed by combining three simple individual template-matching systems and tested under various image variations. Finally, compared to individual matchers as well as other traditional multiple matchers in terms of an accuracy rate, it is shown that a proposed CI-aggregator system, {CI$\_$bl/-aggregator, CI$\_$pl/-aggregator, Cl$\_$pl/-aggregator}, is likely to offer a potential framework for either enhancing completeness or for resolving conflict or for reducing uncertainty of partial information.

  • PDF

Development of the Shortest Route Search Algorithm Using Fuzzy Theory (퍼지 추론을 이용한 최단 경로 탐색 알고리즘의 개발)

  • Jung, Yung-Keun;Park, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.171-179
    • /
    • 2005
  • This paper presents the algorithm using fuzzy inference that preestimates each link speed changed by different kinds of road situations. The elements we are considered are time zone, rainfall probability information and lane control information. This paper is consists of three parts. First of all we set up the fuzzy variables, and preestimate link speed changed by various road situations. For this process, we build the membership functions for each fuzzy variable and establish the fuzzy inference relations to find how fuzzy variables influence on link speed. Second, using backtracking method, we search the shortest route influenced by link speed changed by fuzzy inference. Third, we apply this algorithm to hypothetical network and find the shortest path. As a result, it is shown that this algorithm choose appropriate roundabout path according to the changing road situations.

Automated Prioritization of Construction Project Requirements using Machine Learning and Fuzzy Logic System

  • Hassan, Fahad ul;Le, Tuyen;Le, Chau;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.304-311
    • /
    • 2022
  • Construction inspection is a crucial stage that ensures that all contractual requirements of a construction project are verified. The construction inspection capabilities among state highway agencies have been greatly affected due to budget reduction. As a result, efficient inspection practices such as risk-based inspection are required to optimize the use of limited resources without compromising inspection quality. Automated prioritization of textual requirements according to their criticality would be extremely helpful since contractual requirements are typically presented in an unstructured natural language in voluminous text documents. The current study introduces a novel model for predicting the risk level of requirements using machine learning (ML) algorithms. The ML algorithms tested in this study included naïve Bayes, support vector machines, logistic regression, and random forest. The training data includes sequences of requirement texts which were labeled with risk levels (such as very low, low, medium, high, very high) using the fuzzy logic systems. The fuzzy model treats the three risk factors (severity, probability, detectability) as fuzzy input variables, and implements the fuzzy inference rules to determine the labels of requirements. The performance of the model was examined on labeled dataset created by fuzzy inference rules and three different membership functions. The developed requirement risk prediction model yielded a precision, recall, and f-score of 78.18%, 77.75%, and 75.82%, respectively. The proposed model is expected to provide construction inspectors with a means for the automated prioritization of voluminous requirements by their importance, thus help to maximize the effectiveness of inspection activities under resource constraints.

  • PDF

Fire-Flame Detection Using Fuzzy Logic (퍼지 로직을 이용한 화재 불꽃 감지)

  • Hwang, Hyun-Jae;Ko, Byoung-Chul
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.463-470
    • /
    • 2009
  • In this paper, we propose the advanced fire-flame detection algorithm using camera image for better performance than previous sensors-based systems which is limited on small area. Also, previous works using camera image were depend on a lot of heuristic thresholds or required an additional computation time. To solve these problems, we use statistical values and divide image into blocks to reduce the processing time. First, from the captured image, candidate flame regions are detected by a background model and fire colored models of the fire-flame. After the probability models are formed using the change of luminance, wavelet transform and the change of motion on time axis, they are used for membership function of fuzzy logic. Finally, the result function is made by the defuzzification, and the probability value of fire-flame is estimated. The proposed system has shown better performance when it compared to Toreyin's method which perform well among existing algorithms.