• Title/Summary/Keyword: Fuzzy Prediction System

Search Result 240, Processing Time 0.031 seconds

An On-Line Fuzzy Identification Method utilizing Fuzzy Model Evaluation

  • Bae, Sang-Wook;Park, Tae-Hong-;Lee, Kee-Sang-;Park, Gwi-Tae-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1226-1229
    • /
    • 1993
  • This paper proposes a new on-line fuzzy model identification(ONFID) algorithm in which the fuzzy model evaluation stage is incorporated. The fuzzy model evaluation is performed by the fuzzy equality index which is known to be a useful tool to evaluate the performance of the identified fuzzy model. Then the fuzzy model is updated according to the result of the evaluation. Proposed ONFID algorithm can sensibly identify to the system changes. To show the usefulness of the proposed algorithm, it is applied to the fuzzy model identification problem of the gas furnace and the output prediction problem of the flexible joint manipulator which is a nonlinear system.

  • PDF

Forecasting Ozone Concentration with Decision Support System (의사 결정 구조에 의한 오존 농도예측)

  • 김재용;김태헌;김성신;이종범;김신도;김용국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.368-368
    • /
    • 2000
  • In this paper, we present forecasting ozone concentration with decision support system. Since the mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, modeling of ozone prediction system has many problems and results of prediction are not good performance so far. Forecasting ozone concentration with decision support system is acquired to information from human knowledge and experiment data. Fuzzy clustering method uses the acquisition and dynamic polynomial neural network gives us a good performance for ozone prediction with ability of superior data approximation and self-organization.

  • PDF

Development of Photovoltaic Output Power Prediction System using OR-AND Structured Fuzzy Neural Networks (OR-AND 구조의 퍼지 뉴럴 네트워크를 이용한 태양광 발전 출력 예측 시스템 개발)

  • Kim, Haemaro;Han, Chang-Wook;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.334-337
    • /
    • 2019
  • In response to the increasing demand for energy, research and development of next-generation energy is actively carried out around the world to replace fossil fuels. Among them, the specific gravity of solar power generation systems using infinity and pollution-free solar energy is increasing. However, solar power generation is so different from solar energy that it is difficult to provide stable power and the power production itself depends on the solar energy by region. To solve these problems in this paper, we have collected meteorological data such as actual regional solar irradiance, precipitation, temperature and humidity, and proposed a solar power output prediction system using logic-based fuzzy Neural Network.

Recipe Prediction of Colorant Proportion for Target Color Reproduction (목표색상 재현을 위한 페인트 안료 배합비율의 예측)

  • Hwang, Kyu-Suk;Park, Chang-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.438-445
    • /
    • 2008
  • For recipe prediction of colorant proportion showing nonlinear behavior, we modeled the effects of colorant proportion of basic colors on the target colors and predicted colorant proportion necessary for making target colors. First, colorant proportion of basic colors and color information indicated by the instrument was applied by a linear model and a multi-layer perceptrons model with back-propagation learning method. However, satisfactory results were not obtained because of nonlinear property of colors. Thus, in this study the neuro-fuzzy model with merit of artificial neural networks and fuzzy systems was presented. The proposed model was trained with test data and colorant proportion was predicted. The effectiveness of the proposed model was verified by evaluation of color difference(${\Delta}E$).

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Closed Loop System Identification of Steam Generator Using Neural Networks (신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명)

  • Park, Jong-Ho;Han, Hoo-Seuk;Chong, Kil-To
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

State Recognition and Prediction of a Batch Culture Using Fuzzy Rules

  • Fukuda, Tsunenobu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1098-1101
    • /
    • 1993
  • The purpose of this work is to build a fuzzy model of a batch culture for a process control. The process is highly nonlinear system with large delay. This paper presents two methods of modeling the process behavior. One is a method of recognizing them by fuzzy rules that are contracted by the pattern analysis in consideration of skilled operators' way. The other is a method of predicting them by approximate linear models and fuzzy rules by statistic analysis.

  • PDF

A Plasma-Etching Process Modeling Via a Polynomial Neural Network

  • Kim, Dong-Won;Kim, Byung-Whan;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.297-306
    • /
    • 2004
  • A plasma is a collection of charged particles and on average is electrically neutral. In fabricating integrated circuits, plasma etching is a key means to transfer a photoresist pattern into an underlayer material. To construct a predictive model of plasma-etching processes, a polynomial neural network (PNN) is applied. This process was characterized by a full factorial experiment, and two attributes modeled are its etch rate and DC bias. According to the number of input variables and type of polynomials to each node, the prediction performance of the PNN was optimized. The various performances of the PNN in diverse environments were compared to three types of statistical regression models and the adaptive network fuzzy inference system (ANFIS). As the demonstrated high-prediction ability in the simulation results shows, the PNN is efficient and much more accurate from the point of view of approximation and prediction abilities.

  • PDF

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF