• 제목/요약/키워드: Fuzzy PID Control

검색결과 432건 처리시간 0.023초

퍼지 제어기로부터 PID 제어기의 구현에 관한 연구 (Derivation of a Linear PID Control Law from a Fuzzy Control Theory)

  • 최병재;김병국
    • 한국지능시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.70-78
    • /
    • 1997
  • 여러 가지 고급 제어 이론들에 관한 연구가 심도있게 진행되고 있음에도 불구하고 아직까지 산업현장에는 여러가지 변형된 형태의 PID 제어기가 널리 사용되고있다. 이는 PID 제어기 자체가 가진 제어 구조의 단순성, 효율성, 강건성, 그리고 제어 기술자들에 대한 친밀감 등에 기인한다. 또한 요즘 제어 분야에서는 퍼지 이론을 도입하는 연구가 활발히 진행되고 있다. 특히, 퍼지 이론을 사용해서 거의 모든 함수들을 근사화시킬 수 있다는 연구 결과들이 발표되면서 수학적으로 안정성 및 강건성을 명확히 증명하기에 다소 미흡하였던 퍼지 논리 제어에 관한 연구가 활기를 띠고 있다. 본 논문에서는 먼저 간단한 퍼지 제어기로부터 선형 PID 제어기를 유도한다. 그리고 나서 다소 일반적인 경우의 퍼지 제어기를 사용하여 산업 현장에서 가장 널리 사용되고있는 선형PID 제어기를 유도하여 결굴 PID 제어기는 퍼지 제어기의 일종에 불과함을 입증할 것이다.

  • PDF

직선형 도립 진자의 퍼지-PID 제어에 관한 연구 (A study on Fuzzy-PID Control of a Straight Line Type Inverted Pendulum)

  • Kim, J.M.;Lee, S.G.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.57-64
    • /
    • 1994
  • This paper proposes a fuzzy tuning PID controller for straight line type inverted pendulum. The conventional PID controller which is used widely in industrial field has fatal drawback on determining control gains for practical system. The proposed controller tunes the gains automatically based on fuzzy urle derived from the experience of expert operator. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method in terms of rising time, overshoot, and overall errors.

  • PDF

Fuzzy PID Control by Grouping of Membership Functions of Fuzzy Antecedent Variables with Neutrosophic Set Approach and 3-D Position Tracking Control of a Robot Manipulator

  • Can, Mehmet Serhat;Ozguven, Omerul Faruk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.969-980
    • /
    • 2018
  • This paper aims to design of the neutrosophic fuzzy-PID controller and it has been compared with the conventional fuzzy-PID controller for position tracking control in terms of robustness. In the neutrosophic fuzzy-PID controller, error (e) and change of error (ce) were assessed separately on two fuzzy inference systems (FISs). In this study, the designed method is different from the conventional fuzzy logic controller design, membership degrees of antecedent variables were determined by using the T(true), I(indeterminacy), and F(false) membership functions. These membership functions are grouped on the universe of discourse with the neutrosophic set approach. These methods were tested on three-dimensional (3-D) position-tracking control application of a spherical robot manipulator in the MATLAB Simulink. In all tests, reference trajectory was defined for movements of all axes of the robot manipulator. According to the results of the study, when the moment of inertia of the rotor is changed, less overshoot ratio and less oscillation are obtained in the neutrosophic fuzzy-PID controller. Thus, our suggested method is seen to be more robust than the fuzzy-PID controllers.

퍼지 PID 제어기에 의한 리워크 시스템의 온도제어 (Temperature control of the Rework-system using fuzzy PID controller)

  • 오갑석;강근택
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.6289-6295
    • /
    • 2014
  • BGA 또는 SMD 형태를 갖는 반도체 칩을 인쇄회로 기판에 장착/제거 등의 수리작업에 사용되는 리워크 시스템은 작업 대상물의 손상을 줄이기 위해 열풍 토출구의 온도를 정밀하게 제어할 필요가 있다. 본 논문에서는 비선형 시스템인 리워크 시스템의 열풍 온도 제어를 위해 TSK 퍼지 규칙으로 구성되는 퍼지 PID 제어기 설계 방법을 제시한다. 먼저 제안하는 제어기의 설계 알고리즘을 제시하고, 리워크 시스템에 적용하여 제어기를 설계하는 과정을 보인다. 제안한 제어기의 성능을 확인하기 위하여 온도 제어를 실험한 결과, 제안 방법의 최소자승오차는 9.44로서 일반적으로 사용하는 PID 제어기를 사용한 경우의 오차인 15.88보다 설정온도에 잘 수렴함을 보였다.

보상형 퍼지알고리즘을 이용한 전력발전기의 PID 제어 (PID Control with Fuzzy Compensation for Electric Power Generation Unit)

  • Hak Roh, Lee
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.217-220
    • /
    • 2004
  • Controller that is designed in this paper is form that apply PID controller about Fuzzy algorithm. Fuzzy Controller that using this paper is can speak that compensation style fuzzy controller as form to solidify action of PID controller for plant. This is not form that autotuning the each PID coefficient. We Apply and examined the response character to AGC(Automatic Generation Control) system using designed controller.

  • PDF

비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석 (Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System)

  • 이철희;김성호
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

A Combined Fuzzy -PID Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.465-468
    • /
    • 1998
  • In this paper, merits of both fuzzy and PID controllers are combined. The combined controller is designed such that the tuning of the PID controller is achieved by the basic fuzzy controller via its rule base. The proposed scheme avoids the tuning of PID parameters which is always a time consuming task, difficult to carry out and often poorly done. Computer simulations are made to demonstrate the satisfactory tracking performance of the combined fuzzy-PID controller.

  • PDF

Design of a PID type Fuzzy Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.189-193
    • /
    • 1998
  • A PID type fuzzy Controller is proposed based on a crisp type model in which the consequent parts of the fuzzy control rules are functional representation or real numbers. Using the conventional PID control theory, a new PID type fuzzy controller is developed, which retains the characteristics of the conventional PID controller. An advantage of this approach, is that it simplifies the complicated defuzzification algorithm which could be time consuming. Computer simulation results have shown that the proposed PID fuzzy controller has satisfactory tracking performance.

  • PDF

Performance Improvement of the Nonlinear Fuzzy PID Controller

  • Kim, Jong Hwa;Lim, Jae Kwon;Joo, Ha Na
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.927-934
    • /
    • 2012
  • This paper suggests a new fuzzy PID controller with variable parameters which improves the shortage of the fuzzy PID controller with fixed parameters suggested in [9]. The derivation procedure follows the general design procedure of the fuzzy logic controller, while the resultant control law is the form of the conventional PID controller. Therefore, the suggested controller has two advantages. One is that it has only four fuzzy linguistic rules and analytical form of control laws so that the real-time control system can be implemented based on low-price microprocessors. The other is that the PID control action can always be achieved with time-varying PID controller gains only by adjusting the input and output scalers at each sampling time.

퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구 (A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory)

  • 전마로;김희수;김재학;김수정;송순석;김상현
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.