• 제목/요약/키워드: Fuzzy Model

검색결과 2,831건 처리시간 0.03초

반도체 소자의 퍼지모델 (Fuzzy Model of Semiconductor Devices)

  • 강근택;권태하
    • 대한전자공학회논문지
    • /
    • 제26권12호
    • /
    • pp.2001-2009
    • /
    • 1989
  • This study suggests the use of fuzzy model in the semiconductor devices modeling as a black box approach. When membership functions of fuzzy sets used in a fuzzy model are simple piecewise-linear functions, the fuzzy model can be reresented in a simple equation. To show that the fuzzy model can be very realistic and simple when used in semiconductor devices modeling, we construct fuzzy models for bipolar transistor, MOSFET and GaAs FET, and compare those with canonical piecewise-linear models.

  • PDF

Separate Fuzzy Regression with Crisp Input and Fuzzy Output

  • Yoon, Jin-Hee;Choi, Seung-Hoe
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.301-314
    • /
    • 2007
  • The aim of this paper is to deal with a method to construct a separate fuzzy regression model with crisp input and fuzzy output data using a best response function for the center and the width of the predicted output. Also we introduce the crisp mean and variance of the predicted fuzzy value and also give some examples to compare a performance of the proposed fuzzy model with various other fuzzy regression model.

  • PDF

퍼지 결합 다항식 뉴럴 네트워크 (Fuzzy Combined Polynomial Neural Networks)

  • 노석범;오성권;안태천
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.

An On-Line Fuzzy Identification Method utilizing Fuzzy Model Evaluation

  • Bae, Sang-Wook;Park, Tae-Hong-;Lee, Kee-Sang-;Park, Gwi-Tae-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1226-1229
    • /
    • 1993
  • This paper proposes a new on-line fuzzy model identification(ONFID) algorithm in which the fuzzy model evaluation stage is incorporated. The fuzzy model evaluation is performed by the fuzzy equality index which is known to be a useful tool to evaluate the performance of the identified fuzzy model. Then the fuzzy model is updated according to the result of the evaluation. Proposed ONFID algorithm can sensibly identify to the system changes. To show the usefulness of the proposed algorithm, it is applied to the fuzzy model identification problem of the gas furnace and the output prediction problem of the flexible joint manipulator which is a nonlinear system.

  • PDF

TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용 (Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems)

  • 장욱;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

입자 군집 최적화를 이용한 FCM 기반 퍼지 모델의 동정 방법론 (Identification Methodology of FCM-based Fuzzy Model Using Particle Swarm Optimization)

  • 오성권;김욱동;박호성;손명희
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.184-192
    • /
    • 2011
  • In this study, we introduce a identification methodology for FCM-based fuzzy model. The two underlying design mechanisms of such networks involve Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on FCM clustering method for efficient processing of data and the optimization of model was carried out using PSO. The premise part of fuzzy rules does not construct as any fixed membership functions such as triangular, gaussian, ellipsoidal because we build up the premise part of fuzzy rules using FCM. As a result, the proposed model can lead to the compact architecture of network. In this study, as the consequence part of fuzzy rules, we are able to use four types of polynomials such as simplified, linear, quadratic, modified quadratic. In addition, a Weighted Least Square Estimation to estimate the coefficients of polynomials, which are the consequent parts of fuzzy model, can decouple each fuzzy rule from the other fuzzy rules. Therefore, a local learning capability and an interpretability of the proposed fuzzy model are improved. Also, the parameters of the proposed fuzzy model such as a fuzzification coefficient of FCM clustering, the number of clusters of FCM clustering, and the polynomial type of the consequent part of fuzzy rules are adjusted using PSO. The proposed model is illustrated with the use of Automobile Miles per Gallon(MPG) and Boston housing called Machine Learning dataset. A comparative analysis reveals that the proposed FCM-based fuzzy model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah;Asadi, Somayeh;Babaizadeh, Hamed;Naderi, Keivan
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.103-110
    • /
    • 2018
  • This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

T-S 퍼지모델 기반 표적추적 시스템 (The design T-S fuzzy model-based target tracking systems)

  • 노선영;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.419-422
    • /
    • 2005
  • In this note, the Takagi-Sugeno (T-S) fuzzy-model-based state estimator using standard Kalman filter theory is investigated. In that case, the dynamic system model is represented the T-S fuzzy model with the fuzzy state estimation. The steady state solutions can be found for proposed modeling method and dynamic system for maneuvering targets can be approximated as locally linear system. And then, modeled filter is corrected by the fuzzy gain which is a fuzzy system using the relation between the filter residual and its variation. This paper studies the T-S fuzzy model-based state estimator which the dynamic system can be approximated as linear system.

  • PDF

설비시스템을 위한 자기동조기법에 의한 학습 FUZZY 제어기 설계 (Design of Learning Fuzzy Controller by the Self-Tuning Algorithm for Equipment Systems)

  • 이승
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권6호
    • /
    • pp.71-77
    • /
    • 1995
  • This paper deals with design method of learning fuzzy controller for control of an unknown nonlinear plant using the self-tuning algorithm of fuzzy inference rules. In this method the fuzzy identification model obtained that the joined identification model of nonlinear part and linear identification model of linear part by fuzzy inference systems. This fuzzy identification model ordered self-tuning by Decent method so as to be servile to nonlinear plant. A the end, designed learning fuzzy controller of fuzzy identification model have learning structure to model reference adaptive system. The simulation results show that th suggested identification and learning control schemes are practically feasible and effective.

  • PDF

Fuzzy Linear Regression with the Weakest t-norm

  • Lee, Sung-Ho;Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.105-111
    • /
    • 1998
  • In this paper a fuzzy regression model based on the weakest t-norm is introduced. The model shows a regression model which has fuzzy coefficients and fuzzy variables.

  • PDF