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Fuzzy Linear Regression with the Weakest t-norm
Sungho Lee! - Kyungmoo Kim 2

Abstract

In this paper a fuzzy regression model based on the weakest t-norm is intro-
duced. The model shows a regression model which has fuzzy coefficients and
fuzzy variables.
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1. Introduction and Preliminaries

Tanaka and Watada(1988) illustrated possibilistic linear systems based on sup-
min convolution and formulated a fuzzy linear regression. Their results help us to
evaluate possibilistic linear systems or fuzzy linear regression when coefficients are
symmetric fuzzy numbers and variables are real numbers. However, the difficulty of
multiplication with symmetric fuzzy numbers based on minimum t-norm prevents to
analyze possibilistic linear system with fuzzy coefficients and fuzzy variables. Hence,
in this paper, our main interests are to illustrate a fuzzy linear regression with fuzzy
coefficients and fuzzy variables.

Fuzzy sets can be regarded as a possibility distribution which is a fuzzy restric-
tion. Given a fuzzy set A whose membership function p4(z) is normal, a possibility

distribution 7(z) is defined as W(x)—é—p, a(z). A possibility measure of a set E is
defined as m(E) = sup,cp mx ().

A possibility measure of fuzzy set A is defined as m(A) = sup, (ua(z) * mx (),
where * is a triangular norm(t-norm) that satisfies (i) 0¥0 =0, a*1=1%a=a
(ii) axb < c*d whenevera<c, b<d (iii)a*b=>bxa (iv) (axb)*xc=ax(bxc).

0 , maz(a,b) < 1

Min(a,b), a-b, Maz(0,a+b—1), and T,,(a,b) = {min(a b) . otherwise
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are examples of t-norms and T, is called as the Weakest t-norm. We define a fuzzy

number A as
1 ,a<zx<b

L(=%) ,a-a<z<a, a>0

43

pa(z) =
! R(IT"’) b<z<b+B, B>0

where L(-) and R(-) are shape functions, i.e. non-increasing continuous mapping
from (0,1} onto [0,1] with L(0) = R(0) = 1 and L(1) = R(1) = 0. These fuzzy
numbers are called fuzzy numbers of LR type and denoted by A = (a,b, o, 3)Lr.
When a = b, A is called a triangular fuzzy number and denoted by A = (a, @, ) k.
When a = b and L(-) = R(), A is called a symmetric fuzzy number and denoted by
A(a,a)p. If T is a t-norm and A;, Az are fuzzy sets of the real line R, then their
T-sum C = A @ B and T-multiplication D = A ® B are defined by the generalized
extension principle of Zadeh as

pe(z) = s T(pa(z),u5(y)), z€ R,
pp(z) = sup T(pa(z), na(z)), 2 € R.

2. T,-based addition and multiplication of fuzzy numbers

Let A;(a1,b1, 1, 51)Lr and Az(ag, b2, a2, B2)Lr. Then Mesiar(1997) showed that
T, sum

A1 ® A = (a1 + a2, by + b, maz (o, a2), max(B1, 52)) Lr-
Now we will show T,-subtraction and T,-multiplication.

Lemma 2.1 Let Al(al, bll,al,ﬂl)LR and AQ(az,bQ,ag,ﬂg)RL.
Then A; © Ay = (a1 — by, by — az, maz(a1, B2), maz(az, B1)) LR
Proof. For z<a; — by

pc(z) = sup Tu(pa,(z), pa,(v)

T—y=2z

= maz(pa, (b2 + 2), pa, (a1 — 2))

- e (2 (22

al——bz—z)
= L{—— or z>ay; — by — max(o,
(mam(al,ﬂg) f >a;— by (a1, 82)

Similarly, for z > b; — as

pe(z) =R (ﬁ%‘g—)) for z < by — ag + maz(ag, £1) and for a; — by < z < by — ag,

te(z) =1 and it is zero otherwise.
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Lemma 2.2
(i) Let Aq(ay,a1,81)cr and As(ag, a2, B2)Lr. Then for a1, ag > 0
A1 ® A2 = (a1a2, max(al-az, agal), max(ﬂlaz,ﬂgal))LR.
(ii) Let Ai(a1,1,B81)rL and Az(ag, a2, B2)Lr. Then for a; < 0,a; > 0
A1 @ Ay = (a102, maz(age, —a102), max(asfr, —a102))RL.
(iii) Let A;(a1,a1,81)Lr and As(ag, a9, B2)r- Then for a;,a3 < 0
A1 ® Az = (a1a2, maz(—a182, —az01), maz(—aza1, —araz)) Ry
Proof. (i) For z < aja

pae(2) = sup Tul(pa, (), pa,(y))

Ty=2
= maz(ua,(z/az), pa,(z/a1))
— s <L (alag -~ z) I <a1a2 - z>)
asQ] a1¢e
- ( aag — 2
maz(axai, ajas)

Similarly, for z > aja,

z — ajag
maz(azfy, a15:

,U'A1®A2(z) =R ( )) fO’l" z < aray + maw(a2517a1ﬂ2)-

and it is zero otherwise.
(ii) and (iii). By the same procedure as (i), the results follow.

Lemma 2.3 Let A; = (a;, s, 5i) 1R, Xi(xs,7i,0)Lr, t = 1,2,...,p and let a; >
0,z; > 0,2=1,2,...,p. Then the possibilistic linear function with fuzzy parameters

A; and fuzzy variables X;,i = 1,2,---,p, based on T}, is

Y

Il

(A1®X1)® (A2 @ X)) - @ (4 ® Xp)

p
= (Z @iTi, MaT1<i<p(@i%i, Tic), MaT1<i<p(aid;, xiﬁz’))
LR

i=1

Proof. Fora; >0andz; >0,i=1,2,...,p, apply Lemma 2.2. Then
A; ® Xi = (aimi, maz(aiyi, zsoy), maz(ziB;, aidi)) LR
and hence

n p
ZA'L ® Xz = (Z a;T;, max(al’)'l; Ty GpYp, 0, - - 1apxp)>
=1 ;

=1
maz(aidy, - -+, apdp, B121, - -, BpZp)) LR,

) for z > ajay — maz(aar, aras).
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Lemma 2.4 Let A; = (a5, )1, Xi = (i, 7)1, 4 = 1,2,---,p. Then,
(i) for a; > 0,z; >0, =1,2,---,p
the membership function of Y = (41 ® X1) & --- @ (Ap ® X,) is given by

p
py(y) =L ((y = aiz)/ fnax (@i, wiai)>
=1 -

(ii) for 2; > 0,7 = 1,2,---, p and for all a; > 0 except a; <0
the membership function of Y = (4; ® X;) & --- @ (4, ® X)) is given by

p
py(y) =L <(y =D aizi)/maz(zra1, -, TpOp, 1N, 5 Bj-1%j~1, ~7Yj, - 'rap’Yp))
=1

3. Fuzzy linear regression

In our model all variables and parameters are fuzzy numbers and two types of
outputs are considered, i.e. non-fuzzy data and fuzzy data. The following definitions
-are from Tanaka and Watada(1988). Throughout this section, we consider only
symmetric fuzzy numbers L(-).

Definition 3.1 The inclusion of fuzzy numbers with degree 0 < h < 1, denoted as
A Dp B, is defined by [A]n D [B]n, where [A]p = {z : pa(z) > h}.

Note that [A], D [B]; is equivalent to
az — IL‘I(h)l (o1 —ag) <ay <ag+ 'L_l(h)‘ (a1 — ag)
where p4(z) = L(*z%) and pp(z) = L(%2).

It follows from definition 3.1 that [A]y D [B]y, for B < h if [A], D [B]s. Let the
measure of containment of B in A be denoted as Cp(A).

Definition 3.2 The measure of containment is defined as

Cp(A) = supip(a},- (Bl P

3.1 Non-fuzzy data

In case of non-fuzzy data, the following conditions are assumed to formulate a
possibilistic linear regression model :
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(1) The data can be represented by a possibilistic linear model :

Y =(A10Xn) @ 0(A0X,) SA®X;, i=12--,n (1)

where Xij = (xz’j,')’j)L, Zij > O, _] = 1,2,---,p, 1= 1,2,-- ) and Aj = (aj,aj)[,,
a; >0, j=1,2,---,p.
(ii) Given input-output relations (X;,;), i = 1,2,---,n and a threshold A, it must
hold that

Cyi(Yi*)Zh" 1=1,2,---,n (2)

Where y; is a real number and X; = (X1, -+, Xip).
(iii) The index of fuzziness of the possibilistic linear model is

n
J(a,a) = Zmamlgjsp(aj'yj,xijaj). (3)
=1
Under the above assumptions, our problem is to obtain fuzzy parameters A; ==
(aj, )1, aj > 0, aj >0, j =1,2,---, p that minimize J(a, ) in (3) subject to the
constraint (2). This problem can be modeled as the follows :

n

Min J(a,a) = Zmaxlsjsp(aj'yj, Tij0o) (4)

i=1
subject toa > 0,7y >0, > 0,21 > 0,---, 2, > 0 and

P
Y < ‘L_l(h)| mazi<;<p(a;vs, Tijas) + Z Q%45
J=1
. p
Yi 2 — [L‘ (h)‘ mazi<j<p(a;vj, Tijog) + Y ;i
i=1

Proposition 3.1 Given the data (Xj, ), i = 1,2,...,n, there exists an optimal
solution 4; = (aj,05)r, j=1,2,...,p, for 0 < h < 1in (4).

Proof. For sufficiently large oy, ay,...,0p, A;j = (aj,05)L, 7 = 1,2,...,pis a
feasible solution. Since y; is finite, an optimal solution exists.

Remark. If h =1, them L71(h) = 0. Hence the following equations must hold :
P
Y = Zaja:ij, 1= 1,2,...,n
j=1

Thus, in general, there is no solution because given data do not usually satisfy the
equations.
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3.2 Min problem in fuzzy data

Let us consider a possibilistic linear regression model with fuzzy inputs X; =
(zi5,7;)1 and fuzzy outputs Y; = (v;, )z, i = 1,2,...,n. With the same idea as
discribed in 3.1, the problem is to determine fuzzy parameters A*, .. ., A*, such
that

V'=(AleX))® -0 (40Xy) 20 Y i=12,,n

where assumption (ii) in 3.1 is changed into (ii)’ in 3.2 as follows :
(ii)’ Given input-output relations (X;,Y;), i = 1,2,---,n and a threshold A, it must
hold that

Cy,(Y*)>h, i=1,2---,n.

Under the assumptions (i),(i1)’, and (iii), Our problem can be modeled as follows :

Min J(a,a) = Z 1r£1]a<xp (a5, Tijor;) (5)

i=1

subject toa > 0,7 >0, > 0,21 > 0,---,z, >0and fori =1,2,.--,n

¥ < ij ‘L h){ez ;L h)‘ max (@575, Ti505),

v

g+

1
Yi lL (h)| max (a;7j, zijor;).

This problem will be called Min problem. (5) indicates that the model constructed
by fuzzy data is fuzzier than the model constructed by crisp data.

Proposit_ion 3.2 Given the data (X;,Y;), i = 1,2,...,n, there exists an optimal
solution 4} = (a},@})r, j = 1,2,...,p, of the problem (5) for 0 < h < 1.
Proof. Similar to proposition 3.1 it can be proved.

3.3 Max problem in fuzzy data

Let us consider the same model in 3.2, However the idea to the solution is con-
verse to the idea in 3.2, i.e. the problem is to determine fuzzy parameters 43, ..., Ay
such that T

Y=(A®Xa)® - & (4,0 Xy) Cr Y
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Note that the inclusion relation is opposite to Min problem. Thus, We want to
determine Y;*, ¢ = 1,2,---,n which are near to Y; subject to Y* Cp Y;. Hence
Assumption (11) in 3.11s changed into (ii)” in 3.3 as follows :

(ii)”. Given input-output relations (X;,Y;), 4 = 1,2,---,n, and a threshold h, it
must hold that

Cy(Y;)>h, i=1,2,...,n

Under the assumptions (i),(ii)”, and (iii), our problem can be modeled as follows :
Maz J(a,a) = max (a;;, Tijct;) (6)

1<5 <
i=1

subject toa >0, y>0, >0, 2; >0,---,z, >0and fori =1,2,...,n
P
Zajx,-j—F’L_l
j=1

P
vi > Zajﬁij“L——l(h)
i

IA

’L h)’ max (a;vj, Tijaj),

Yi 1<5<p

: -1 o~ Ty
e + \L (h)) fg% (a;v;, Tij005).

This problem will be called Max problem and it will not assure the existence of =
solution.
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