• Title/Summary/Keyword: Fuzzy Matrix

Search Result 460, Processing Time 0.037 seconds

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

A Decision Support System for the Selection of a Rapid Prototyping Process (쾌속조형공정 선정을 위한 지원 시스템)

  • 변홍석;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.5-8
    • /
    • 2003
  • This paper presents a methodology to be able to select an appropriate RP system that suits the end use of a part. Evaluation factors used in process selection include major attributes such as accuracy, roughness, strength, elongation, part cost and build time that greatly affect the performance of RP systems. Crisp values such as accuracy and surface roughness are obtained with a new test part developed. The test part is designed with conjoint analysis to reflect users' preference. The part cost and build time that have approximate ranges due to cost and many variable parameters are presented by linguistic values that can be described with triangular fuzzy numbers. Based on the evaluation values obtained, an appropriate RP process for a specific part application is selected by using the modified TOPSIS(Technique of Order Preference by Similarity to Ideal Solution) method. It uses crisp data as well as linguistic variables, and each weight on the alternatives is assigned by using pair-wise comparison matrix. The ranking order helps the decision making of the selection of RP systems.

  • PDF

Genetic Diversity of Wild Quail in China Ascertained with Microsatellite DNA Markers

  • Chang, G.B.;Chang, H.;Liu, X.P.;Zhao, W.M.;Ji, D.J.;Mao, Y.J.;Song, G.M.;Shi, X.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1783-1790
    • /
    • 2007
  • The genetic diversity of domestic quail and two wild quail species, Japanese (Coturnix coturnix)and Common quail (Coturnix japonica), found in China was studied using microsatellite DNA markers. According to a comparison of the corresponding genetic indices in the three quail populations, such as Polymorphism Information Content (PIC), Mean Heterozygosity ($\bar{H}$) and Fixation Index, wild Common quail possessed rich genetic diversity with 4.67 alleles per site. Its values for PIC and $\bar{H}$ were the highest, 0.5732 and 0.6621, respectively. Domestic quail had the lowest values, 0.5467 and 0.5933, respectively. Wild Japanese quail had little difference in genetic diversity from domestic quail. In addition, from analyses of the fuzzy cluster based on standard genetic distance, the similarity relationship matrix coefficient between wild Japanese quail and domestic quail was 0.937, and that between wild Common quail and domestic quail was 0.783. All of these results showed that the wild Japanese quail were closer to the domestic quail for phylogenetic relationship than wild Common quail. These results at the molecular level provide useful data about quail's genetic background and further supported the hypothesis that the domestic quail originated from the wild Japanese quail.

A Modified Approach to Density-Induced Support Vector Data Description

  • Park, Joo-Young;Kang, Dae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The SVDD (support vector data description) is one of the most well-known one-class support vector learning methods, in which one tries the strategy of utilizing balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. Recently, with the objective of generalizing the SVDD which treats all training data with equal importance, the so-called D-SVDD (density-induced support vector data description) was proposed incorporating the idea that the data in a higher density region are more significant than those in a lower density region. In this paper, we consider the problem of further improving the D-SVDD toward the use of a partial reference set for testing, and propose an LMI (linear matrix inequality)-based optimization approach to solve the improved version of the D-SVDD problems. Our approach utilizes a new class of density-induced distance measures based on the RSDE (reduced set density estimator) along with the LMI-based mathematical formulation in the form of the SDP (semi-definite programming) problems, which can be efficiently solved by interior point methods. The validity of the proposed approach is illustrated via numerical experiments using real data sets.

Development of Robust Intelligent Digital Controller for Smart Space (스마트 스페이스 구축을 위한 강인 지능형 디지털 제어기 개발)

  • Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 2008
  • In this paper, we concern the stability of smart space by using the robust digital controller. The proposed methodologies are based on the intelligent digital redesign (IDR). More precisely, we represent the nonlinear and uncertain analog system as the Takaki-Sugeno (T-S) fuzzy model. Then the IDR problem can be reduced to find the digital gains minimizing the norm distance between the closed-loop states of the analog and digital control. Its constructive conditions are expressed as the linear matrix inequalities (LMIs). At last, a numerical example, HVAC system, is demonstrated to visualize the feasibility of the proposed methodology.

Recognition of Multi-Target Objects Using Passive AVI Techniques (수동 AVI 기술을 이용한 다중목표물의 인식)

  • Jo, Dong-Uk;Kim, Ju-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1970-1979
    • /
    • 1999
  • This paper proposes an AVI system which recognizes the license plate and the driver's face simultaneously using passive AVI techniques. For this, firstly, the pro-processing algorithm independent of the environment is proposed and region extraction of the car number plate and the driver's face is described. Secondly, characters are separated and recognition parameters are extracted from target regions. Thirdly, template matching of car number plate is performed and the fuzzy relation matrix of driver face is made for the final recognition processes. The merits of the proposed system are following : Pre-processing is accomplished regardless of the environment. The application areas of conventional AVI system can be expanded in the content that the driver's face is also recognized in the proposed system compared with only the number plast is recognized in the existing systems.

  • PDF