• Title/Summary/Keyword: Fuzzy Logic Systems

Search Result 1,674, Processing Time 0.029 seconds

Neural Network Compensation Technique for Standard PD-Like Fuzzy Controlled Nonlinear Systems

  • Song, Deok-Hee;Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • In this paper, a novel neural fuzzy control method is proposed to control nonlinear systems. A standard PD-like fuzzy controller is designed and used as a main controller for the system. Then a neural network controller is added to the reference trajectories to form a neural-fuzzy control structure and used to compensate for nonlinear effects. Two neural-fuzzy control schemes based on two well-known neural network control schemes, the feedback error learning scheme and the reference compensation technique scheme as well as the standard PD-like fuzzy control are studied. Those schemes are tested to control the angle and the position of the inverted pendulum and their performances are compared.

Study on Incident Detection System Using Fuzzy Logic

  • Kim, Intaek;Lee, Eunggi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.268-271
    • /
    • 1998
  • this paper presents the potential application of fuzzy logic to the automatic incident detection system. While the conventional incident detection algorithms are based on a binary decision process, the algorithm using fuzzy logic can incorporate ambiguity which occurs in determining incidents. Since collecting good amount of data to construct data base for incidents is pretty expensive, a traffic simulator called FRESIM is used to simulate traffic condition in a freeway. Incident data are obtained by changing input parameters of the simulator and the fuzzy algorithm generates fuzzy rule for determining normal and incident traffic conditions. In this paper, various steps are described to test the algorithm and its results are summarized.

  • PDF

On Standardization of Fuzzy Control Systems with Industrial Applications (산업용 퍼지제어 시스템의 표준화 동향)

  • Choi, Jong-Soo;Lee, Gi-Bum;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.758-760
    • /
    • 1999
  • To promote fuzzy logic in industrial applications, the German Association of Mechanical and Electrical Engineers(VDI/VDE) established the work group UA451, focusing on "Fuzzy Logic and Fuzzy Control" in 1991. The group focuses on two activities: providing information platforms for designers to exchange project experiences and fuzzy logic standardization. This article presents some of the intermediate results of the standardization activities and discusses future standards for fuzzy logic systems.

  • PDF

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

Stability Analysis of Single-input Fuzzy Logic Controller (단일 입력 퍼지논리제어기의 안정성 분석)

  • 최병재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.47-51
    • /
    • 2001
  • According as the controlled plants become more complex and large-scaled, the development of more intelligent control schemes is required in the control field. A fuzzy logic control (FLC) is one of proper schemes for this tendency. Recently, fuzzy control has been applied successfully to many industrial applications due to a number of advantages. But it still has some disadvantages. The conventional FLC has many tuning parameters: membership functions, scaling factors, and so forth. In order to improve this problem, a single-input fuzzy logic control (SFIC) which greatly simplifies the design process of the conventional FLC was proposed. Many research has also been proposed to develop the stability analysis of the FLC. In this paper we analyze the absolute stability of the SFLC. We first expand a nonlinear controlled plant into a Taylor series about a nominal operating point. And a fuzzy control system is transformed into a Lure system with nonlinearities. We also prove that the closed-loop system with the SFLC satisfies the sector condition globally.

  • PDF

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF

Logic-based Fuzzy Neural Networks based on Fuzzy Granulation

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1510-1515
    • /
    • 2005
  • This paper is concerned with a Logic-based Fuzzy Neural Networks (LFNN) with the aid of fuzzy granulation. As the underlying design tool guiding the development of the proposed LFNN, we concentrate on the context-based fuzzy clustering which builds information granules in the form of linguistic contexts as well as OR fuzzy neuron which is logic-driven processing unit realizing the composition operations of T-norm and S-norm. The design process comprises several main phases such as (a) defining context fuzzy sets in the output space, (b) completing context-based fuzzy clustering in each context, (c) aggregating OR fuzzy neuron into linguistic models, and (c) optimizing connections linking information granules and fuzzy neurons in the input and output spaces. The experimental examples are tested through two-dimensional nonlinear function. The obtained results reveal that the proposed model yields better performance in comparison with conventional linguistic model and other approaches.

  • PDF

Prediction System Design based on An Interval Type-2 Fuzzy Logic System using HCBKA (HCBKA를 이용한 Interval Type-2 퍼지 논리시스템 기반 예측 시스템 설계)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.111-117
    • /
    • 2010
  • To improve the performance of the prediction system, the system should reflect well the uncertainty of nonlinear data. Thus, this paper presents multiple prediction systems based on Type-2 fuzzy sets. To construct each prediction system, an Interval Type-2 TSK Fuzzy Logic System and difference data were used, because, in general, it has been known that the Type-2 Fuzzy Logic System can deal with the uncertainty of nonlinear data better than the Type-1 Fuzzy Logic System, and the difference data can provide more steady information than that of original data. Also, to improve each rule base of the fuzzy prediction systems, the HCBKA (Hierarchical Correlation Based K-means clustering Algorithm) was applied because it can consider correlationship and statistical characteristics between data at a time. Subsequently, to alleviate complexity of the proposed prediction system, a system selection method was used. Finally, this paper analyzed and compared the performances between the Type-1 prediction system and the Interval Type-2 prediction system using simulations of three typical time series examples.

  • PDF

A fuzzy-logic controller for a differential-drive mobile robot (이동로봇을 위한 퍼지로직 제어기)

  • 박영민;김대영;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.532-535
    • /
    • 1997
  • This paper describes the design of a fuzzy-logic controller for a differential-drive mobile robots. This controller uses absolute position information to modify control parameters to compensate the orientation error. CC-Control method is compensated for the internal error by wheel encoders and the fuzzy-logic control provides compensation for external errors. The validities of the proposed scheme is evaluated using simulation.

  • PDF

Temeperature control method of refrigerator using fuzzy logic controller (퍼지 로직 제어기를 이용한 냉장고 온도 제어 방법)

  • 최병준;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.28-31
    • /
    • 1997
  • This paper describes the quick and precise controlling method for home-applied refrigerator. The proposed controller is based on the fuzzy logic control method and is designed for better performance in maintaining the constant temperature of the refrigerator. The temperature of the refrigerator is controlled by the cooling air blowing fan motor which is put on, off according to fuzzy logic controller. Finally, I study the performance of the proposed controller through the computer simulation about the approximated model of the refrigerator.

  • PDF