• Title/Summary/Keyword: Fuzzy Logic System

Search Result 1,664, Processing Time 0.029 seconds

Evolutionary Design of a Fuzzy Logic Controller for Multi-Agent Systems

  • Jeong, Il-Kwon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.507-512
    • /
    • 1998
  • It is an interesting area in the field of artificial intelligence to and an analytic model of cooperative structure for multi-agent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent co-operative behavior: A modified genetic algorithm was applied to automating the discovery of a fuzzy logic controller jot multi-agents playing a pursuit game. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to and the fuzzy logic controller seems to be promising.

  • PDF

Self-Organization of Fuzzy Rule Base Using Genetic Algorithm

  • Park, Sae-Hie;Kim, Yong-Ho;Choi, Young-Keel;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.881-886
    • /
    • 1993
  • Fuzzy logic rule-based controller has many desirable advantages, which are simple to implement on the real time and need not the information of structure and dynamic characteristics of the system. Thus, nowadays, the scope of the application of the fuzzy logic controller becomes enlarged. But, if the controlled plant is a time-varying and nonlinear system, it is not easy to construct the fuzzy logic rules which usually need the knowledge of an expert. In this paper, an approach in which the logic control rules can be self-organized using genetic algorithm will be proposed and the effectiveness of the proposed method will be verified by computer simulation of the 2 d.o.f. planar robot manipulator.

  • PDF

Design of Single-input Direct Adaptive Fuzzy Logic Controller Based on Stable Error Dynamics

  • Park, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • For minimum phase systems, the conventional fuzzy logic controllers (FLCs) use the error and the change-of-error as fuzzy input variables. Then the control rule table is a skew symmetric type, that is, it has UNLP (Upper Negative and Lower Positive) or UPLN property. This property allowed to design a single-input FLC (SFLC) that has many advantages. But its control parameters are not automatically adjusted to the situation of the controlled plant. That is, the adaptability is still deficient. We here design a single-input direct adaptive FLC (SDAFLC). In the AFLC, some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules are adjusted by an adaptive law. The SDAFLC is designed by a stable error dynamics. We prove that its closed-loop system is globally stable in the sense that all signals involved are bounded and its tracking error converges to zero asymptotically. We perform computer simulations using a nonlinear plant and compare the control performance between the SFLC and the SDAFLC.

  • PDF

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

Traffic Fuzzy Control : Software and Hardware Implementations

  • Jamshidi, M.;Kelsey, R.;Bisset, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.907-910
    • /
    • 1993
  • This paper describes the use of fuzzy control and decision making to simulate the control of traffic flow at an intersection. To show the value of fuzzy logic as an alternative method for control of traffic environments. A traffic environment includes the lanes to and from an intersection, the intersection, vehicle traffic, and signal lights in the intersection. To test the fuzzy logic controller, a computer simulation was constructed to model a traffic environment. A typical cross intersection was chosen for the traffic environment, and the performance of the fuzzy logic controller was compared with the performance of two different types of conventional control. In the hardware verifications, fuzzy logic was used to control acceleration of a model train on a circular path. For the software experiment, the fuzzy logic controller proved better than conventional control methods, especially in the case of highly uneven traffic flow between different directions. On the hardware si e of the research, the fuzzy acceleration control system showed a marked improvement in smoothness of ride over crisp control.

  • PDF

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

A Multiple-Valued Fuzzy Approximate Analogical-Reasoning System

  • Turksen, I.B.;Guo, L.Z.;Smith, K.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1274-1276
    • /
    • 1993
  • We have designed a multiple-valued fuzzy Approximate Analogical-Reseaning system (AARS). The system uses a similarity measure of fuzzy sets and a threshold of similarity ST to determine whether a rule should be fired, with a Modification Function inferred from the Similarity Measure to deduce a consequent. Multiple-valued basic fuzzy blocks are used to construct the system. A description of the system is presented to illustrate the operation of the schema. The results of simulations show that the system can perform about 3.5 x 106 inferences per second. Finally, we compare the system with Yamakawa's chip which is based on the Compositional Rule of Inference (CRI) with Mamdani's implication.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Development of the automatic tunneling algorithm based on fuzzy logic for the microtunneling system

  • Han, Jeong-Su;Do, Jun-Hyeong;Zeungnam Bien;Janghyun Nam;Park, Taedong;Park, Kwang-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.676-678
    • /
    • 2003
  • Microtunneling techniques play a crucial role in the construction of pipelines. This paper shows the automatic tunneling algorithm of microtunneling system using fuzzy logic technology to assist operators to assure the quality of microtunneling construction. To have effective output value of fuzzy controller, we slightly modified the conventional defuzzification methods. The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

  • PDF

A Design of Fuzzy Speed Controller for Induction Motor using Microcontroller (마이크로컨트롤러를 이용한 유도전동기의 퍼지속도제어기 설계)

  • Ahn, Jeong-Hoon;Yang, Hyung-Ryeol;Wi, Seog-Oh;Lim, Young-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1999-2001
    • /
    • 1998
  • A speed controller of a induction motor using Microcontroller and Fuzzy logic is presented in the paper. Generally, fuzzy logic controller is known as a controller which can be coped with a non-linear and a complex system. A fuzzy logic is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The results of experiment show excellence of the proposed system and that the proposed system is appropriate to control the speed of a induction motor for industrial application.

  • PDF