• Title/Summary/Keyword: Fuzzy Inference Rules

Search Result 332, Processing Time 0.024 seconds

A Simple Hierarchical fuzzy Controller (단순한 형태의 계층 퍼지 제어기)

  • Joo, Moon-G.;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.505-507
    • /
    • 1998
  • In this paper, a simple hierarchical fuzzy inference system using structured Takagi-Sugeno type fuzzy inference units(SFIUs) is proposed. The number of fuzzy rules of the proposed HFIS is minimum in the sense of that only the number of partitions of each system variables, not of intermediate outputs of layered fuzzy controllers, are concerned. And resulted number of fuzzy rules is a summation of partition in each system variables. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

A hierarchical fuzzy controller using structured Takagi-Sugeno type fuzzy inference engine

  • Moon G. Joo;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.179-184
    • /
    • 1998
  • In this paper, a new hierarchical fuzzy inference system (HFIS) using structured Takagi-Sugeno type fuzzy inference units(FIUs) is proposed. The proposed HFIS not only solves the rule explosion problem in conventional HFIS, but also overcomes the readability problem caused by the structure where outputs of previous level FIUs are used as input variables directly. Gradient descent algorithm is used for adaptation of fuzzy rules. The ball and beam control is performed in computer simulation to illustrate the performance of the proposed controller.

  • PDF

고속 디지탈 퍼지 추론회로 개발과 산업용 프로그래머블 콘트롤러에의 응용

  • 최성국;김영준;박희재;고덕용;김재옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.354-358
    • /
    • 1992
  • This paper describes a development of high speed fuzzy inference circuit for the industrialprocesses. The hardware fuzzy inference circuit is developed utilizing a hardware fuzzy inference circuit is developed utilizing a DSP and a multiplier and accumulator chip. To enhance the inference speed, the pipeline disign is adopted at the bottleneck and the general Max-Min inference method is slightly modified as Max-max method. As a results, the inference speed is evaluated to be 100 KFLIPS. Owing to this high speed feature, satisfactory application can be attained for complex high speed motion control as well as the control of multi-input multi-output nonlinear system. As an application, the developed fuzzy inference circuit is embedded to a PLC (Porgrammable Logic Controller) for industrial process control. For the fuzzy PLC system, to fascilitate the design of the fuzzy control knowledge such as membership functions, rules, etc., a MS-Windows based GUI (Graphical User Interface) software is developed.

A Study on Sensitivity Analysis by Fuzzy Inference Rules Using Color and Location Information

  • Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.268-274
    • /
    • 2009
  • Human beings can represent state of mind such as psychological state, personality or emotional trouble by the pictures painted on one's own initiative. But in general, it is hard to understand a consulter's unconscious state through one's objective and intentional descriptions only. So one's psychological state and emotional trouble can be understood and cured by color and location information of objects drawn in one's picture. By this reason, a consultant can help and settle a consulter's growth stages of life and emotional trouble through treatment by pictures. In this paper, we proposed a method to find out state of sensitivity by analysis of color and location information represented in a picture and fuzzy inference rules. We applied the proposed method to the states of sensitivity from color information proposed by Alschuler and Hattwick and the psychological states from location information proposed by Grunwald. In the experimental results by the two applications, we verified the proposed sensitivity analysis method is efficient.

A Study on Dynamic Inference for a Knowlege-Based System iwht Fuzzy Production Rules

  • Song, Soo-Sup
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.55-74
    • /
    • 2000
  • A knowledge-based with production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a method to reflect the dynamic nature of a system when we make inferences with a knowledge-based system. This paper suggests a strategy of dynamic inference that can be used to take into account the dynamic behavior of decision-making with the knowledge-based system consisted of fuzzy production rules. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by the AHP(Analytic Hierarchy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with the Min operator, into a single DM for the rule. In this way, the importance of attributes of a rule, which can be changed from time to time, can be reflected in an inference with fuzzy production systems.

  • PDF

Structurally Adaptive Fuzzy Radial Basis Function Networks (구조적으로 적응하는 퍼지 RBF 신경회로망)

  • Choi, Jong-Soo;Lee, Gi-Bum;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2203-2205
    • /
    • 1998
  • This paper describes fuzzy radial basis function networks(FRBFN) extracting fuzzy rules through the learning from training data set. The proposed FRBFN is derived from the functional equivalence between RBF networks and fuzzy inference systems. The FRBFN learn by assigning new fuzzy rules and updating the parameters of existing fuzzy rules. The parameters of the FRBFN are adjusted using the standard LMS algorithm. The performance of the FRBFN is illustrated with function approximation and system identification.

  • PDF