• Title/Summary/Keyword: Fuzzy Functions

Search Result 941, Processing Time 0.028 seconds

A Study on the Load Frequency Control of Two-Area Power System using ANFIS Precompensated PID Controller (ANFIS 전 보상 PID 제어기에 의한 2지역 전력계통의 부하주파수 제어에 관한 연구)

  • Chung, Mun-Kyu;Chung, Kyeong-Hwan;Joo, Seok-Min;An, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1314-1317
    • /
    • 1999
  • In this paper, we design an Adaptive Neuro-Fuzzy Inference System(ANFIS) Precompensator for the performance improvement of conventional proportional integral derivative (PID) controller that the governor system of power plant constantly maintains the load frequency of two-area power system. The ANFIS Precompensator is expressed as the membership functions of premise parameters and the linear combination of consequent parameters by Sugeno's fuzzy if-then rules using nonlinear input-output relation for the set point automatic modification maintaining conventional PID controller. The proposed compensation design technique is hoped to be satisfactory method overcome difficulty of exact modelling and arising problems by the complex nonlinearities of power system, and our design shows merit that is easily implemented by adding an ANFIS precompenastor to an existing PID controller without replacement.

  • PDF

Approximate Fuzzy Clustering Based on Density Functions (밀도함수를 이용한 근사적 퍼지 클러스처링)

  • 권석호;손세호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • In general, exploratory data analysis consists of three processes: i) assessment of clustering tendency, ii) cluster analysis, and iii) cluster validation. This analysis method requiring a number of iterations of step ii) and iii) to converge is computationally inefficient. In this paper, we propose a density function-based approximate fuzzy clustering method with a hierachical structure which consosts of two phases: Phase I is a features(i.e., number of clusters and cluster centers) extraction process based on the tendency assessment of a given data and Phase II is a standard FCM with the cluster centers intialized by the results of the Phase I. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

A Biological Reaction Modeling in Sewage Water Treatment Systems (하수처리장에서 생물학적 반응 특성에 대한 모델)

  • 이진락;양일화;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2001
  • This paper resents a biological reaction model of describing processing features in treating wastewater via activated sludge A proposed model is designed by combining fuzzy rules investigating several elements which have influence on variables to be supervised BOD and SS are suggested as common variables in input and output variables, and O$_2$quantity is closed as input variable. We chose triangular type membership functions for input variables and determined the grades in each membership function based upon process data According to simulation result to show the validity of proposed model, fuzzy model's outputs give almost similar data to process output under same input conditions.

  • PDF

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Active Noise Control by ANFIS for Unpredictable Secondary Path (불예측적 이차경로에 대한 ANFIS를 이용한 능동소음제어)

  • Kim, Eung-Ju;Choi, Won-Seock;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1964-1966
    • /
    • 2001
  • Active Noise control(ANC) is rapidly becoming the most effective way to reduce noises that can otherwise be very difficult and expensive to control. This research presents ANFIS (Adaptive Network Fuzzy Inference System) controller for adaptively noise cancelling in a duct. ANC system generates secondary control sound pressure with same amplitude and with opposite phase as noise to be eliminated. ANFIS controller is trained to optimize its parameters for adaptively cancelling noise. That is ANFIS train its parameters by gradient descent and LSE method so called hybrid method. This paper present ANFIS in active noise control which provides an improvement convergence speed and limitation of linearity condition. It can model nonlinear functions of arbitrary complexity and ANFIS can construct an input-ouput mapping based on both human knowledge in the form of Takagi and Sugeno's fuzzy if-then rules and stipulated input-output data pairs. This paper also shows that the proposed ANFIS active noise control system successfully cancelled noise.

  • PDF

Seismic Response Control of Tilted Tall Building based on Evolutionary Optimization Algorithm (경사진 고층건물의 진화최적화 알고리즘에 기반한 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • A tilted tall building is actively constructed as landmark structures around world to date. Because lateral displacement responses of a tilted tall building occurs even by its self-weight, reduction of seismic responses is very important to ensure structural safety. In this study, a smart tuned mass damper (STMD) was applied to the example tilted tall building and its seismic response control performance was investigated. The STMD was composed of magnetorheological (MR) damper and it was installed on the top floor of the example building. Control performance of the STMD mainly depends on the control algorithn. Fuzzy logic controller (FLC) was selected as a control algorithm for the STMD. Because composing fuzzy rules and tuning membership functions of FLC are difficult task, evolutionary optimization algorithm (EOA) was used to develop the FLC. After numerical simulations, it has been seen that the STMD controlled by the EOA-optimized FLC can effectively reduce seismic responses fo the tilted tall building.

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

Features Extraction for Classifying Parkinson's Disease Based on Gait Analysis (걸음걸이 분석 기반의 파킨슨병 분류를 위한 특징 추출)

  • Lee, Sang-Hong;Lim, Joon-S.;Shin, Dong-Kun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2010
  • This paper presents a measure to classify healthy persons and Parkinson disease patients from the foot pressure of healthy persons and that of Parkinson disease patients using gait analysis based characteristics extraction and Neural Network with Weighted Fuzzy Membership Functions (NEWFM). To extract the inputs to be used in NEWFM, in the first step, the foot pressure data provided by the PhysioBank and changes in foot pressure over time were used to extract four characteristics respectively. In the second step, wavelet coefficients were extracted from the eight characteristics extracted from the previous stage using the wavelet transform (WT). In the final step, 40 inputs were extracted from the extracted wavelet coefficients using statistical methods including the frequency distribution of signals and the amount of variability in the frequency distribution. NEWFM showed high accuracy in the case of the characteristics obtained using differences between the left foot pressure and the right food pressure and in the case of the characteristics obtained using differences in changes in foot pressure over time when healthy persons and Parkinson disease patients were classified by extracting eight characteristics from foot pressure data. Based on these results, the fact that differences between the left and right foot pressures of Parkinson disease patients who show a characteristic of dragging their feet in gaits were relatively smaller than those of healthy persons could be identified through this experiment.