• Title/Summary/Keyword: Fuzzy Control Technique

Search Result 522, Processing Time 0.026 seconds

A Matlab and Simulink Based Three-Phase Inverter Fault Diagnosis Method Using Three-Dimensional Features

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • Fault detection and diagnosis is a task to monitor the occurrence of faults and pinpoint the exact location of faults in the system. Fault detection and diagnosis is gaining importance in development of efficient, advanced and safe industrial systems. Three phase inverter is one of the most common and excessively used power electronic system in industries. A fault diagnosis system is essential for safe and efficient usage of these inverters. This paper presents a fault detection technique and fault classification algorithm. A new feature extraction approach is proposed by using three-phase load current in three-dimensional space and neural network is used to diagnose the fault. Neural network is responsible of pinpointing the fault location. Proposed method and experiment results are presented in detail.

Attitude Control of Surface Ship using fuzzy inference technique (퍼지추론 기법을 이용한 선체자세 제어)

  • 김희정;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.149-152
    • /
    • 2001
  • 선박이 해상에서 운항시, 선체는 파도에 의해 심하게 동요되기 때문에 승선감과 안전성이 저하된다. 따라서 선박의 안전항해, 쾌적한 승선감, 구조적인 안전 보장을 위한 선체제어를 위한 필요성이 증대되어 왔다. 기존의 PID 제어기법 등은 정상편차가 적어 과도응답의 문제점 및 오차누적의 문제점이 있고, 퍼지제어 기법은 최적화가 어렵다는 단점을 가진다. 본 논문에서는 퍼지추론 기법을 이용한 선체자세 제어기법으로 운동체에 관한 전문가의 지식과 경험을 바탕으로 퍼지집합과 퍼지규칙을 설정하고 설계된 퍼지 추론을 통해 현재의 운동상황을 판단함으로써 효과적인 최적화와 자세계산을 수행할 수 있다. 본 논문에서는 퍼지추론을 이용한 자세제어 알고리즘을 제안하고 실시간 시뮬레이션을 통하여 시험한다.

  • PDF

A heuristic technique for autonomous control of AUV. (수중운동체의 자율항행 제어를 위한 휴리스틱 기법)

  • Lee, Young-Il;Kim, Yong-Gi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1441-1444
    • /
    • 2000
  • 실시간 정보가 알려지지 않은 해저환경에서 자율수중 운동체(AUV, Autonomous Underwater Vehicle)가 성공적인 임무 수행을 완료하기 위해서는 주어진 목표지점까지의 안전하고 효율적인 경로설정이 선행되어야 한다. 이를 위해 평가함수(evaluation function)에 기반한 휴리스틱 탐색(heuristic search)이 사용되는데 대부분의 평가함수는 목표점까지의 거리, 소모되는 연료로 구성된다[1]. 본 논문에서는 영역전문가가 보유한 장애물회피 관련 경험적 정보(heuristic information)를 반영하여 보다 효율적인 평가함수를 고안하며 후보노드들간의 관계성을 고려한 퍼지관계곱(Fuzzy Relational Products) 기반 휴리스틱 탐색기법을 제안한다. 제안한 탐색기법의 성능을 검증하기 위해 수행시간(cpu time), 경로의 최적화(optimization)정도, 사용 메모리 관점에서 시뮬레이션을 통해 $A^*$ 탐색기법과 비교한다.

  • PDF

Task-Based Analysis on Number of Robotic Fingers for Compliant Manipulations

  • Kim, Byoung-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.333-338
    • /
    • 2009
  • This paper presents a task-based analysis on the number of independent robotic fingers required for compliant manipulations. Based on the stiffness relation between operational space and fingertip space of a multi-fingered object manipulating system, we describe a technique for modulation of the fingertip stiffness without inter-finger coupling so as to achieve the desired stiffness specified in the operational space. Thus, we provides a guide line how many fingers are basically required for successful multi-fingered compliant tasks. Consequently, this paper enables us to assign effectively the number of fingers for various compliant manipulations by robot hands.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Effective Decentralized Sampled-Data Control for Nonlinear Systems in T-S' Form: Overlapping IDR Approach (타카기-수게노 형태의 비선형 시스템의 효율적 분산 샘플치 제어: 중복 지능형 디지털 재설계 접근법)

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.94-99
    • /
    • 2012
  • This paper discusses a decentralized sampled-data control problem for large-scale nonlinear systems. The system is represented in Takagi-Sugeno's form. Next, we design a decentralized analog controller based on the overlapping decomposition technique. The final step is to apply the intelligent digital redesign scheme for converting the analog controller into the sampled-data one. Design condition is represented in terms of linear matrix inequalities. A simulation result is provided for the effectiveness of the proposed design method.

A Traction System Control Method for 2 Motor Driven Electric Vehicle (독립 구동형 전기자동차의 추진 시스템 제어 기법)

  • 박정우;하회두;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.357-367
    • /
    • 1999
  • When traction system of 2-motor driven electric vehicle(EV) is consisted of two motors (IPMSM) . two inverters. and one traction controller, control performances of IPMSM for an electric vehicle is affected by parameter variation b because of large current magnitude and wide current phase angle. To solve this problem, new parameter estimator for L Ld and Lq is constructed by neu때 network technique. And new vector control algorithm with parameter estimator by n neural network is proposed for IPMSM.And also. an advanced traction control algorithm is proposed using fuzzy c controller in order to enhance the driveability oftwo-wheel drive EVs with fitted with a traction control system Performances of the proposed algorithm are examined by simulations and the experimental resul않 with respect to t the prototype IPMSM and EV.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Vision-based Vehicle Detection Using HOG and OS Fuzzy-ELM (HOG와 OS 퍼지-ELM를 이용한 비전 기반 차량 검출 시스템)

  • Yoon, Changyong;Lee, Heejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.621-628
    • /
    • 2015
  • This paper describes an algorithm for detecting vehicles detection in real time. The proposed algorithm has the technique based on computer vision and image processing. In real, complex environment such as one with road traffic, many algorithms have great difficulty such as low detection rate and increasing computational time due to complex backgrounds and rapid changes. To overcome this problem in this paper, the proposed algorithm consists of the following methods. First, to effectively separate the candidate regions, we use vertical and horizontal edge information, and shadow values from input image sequences. Second, we extracts features by using HOG from the selected candidate regions. Finally, this paper uses the OS fuzzy-ELM based on SLFN to classify the extracted features. The experimental results show that the proposed method perform well for detecting vehicles and improves the accuracy and the computational time of detecting.