• Title/Summary/Keyword: Fuzzy Control

Search Result 4,184, Processing Time 0.06 seconds

BOXES-based Cooperative Fuzzy Control for Cartpole System

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • Two fuzzy controllers defined by 2 input variables cooperate to control a cartpole system in terms of balancing as well as centering. The cooperation is due to the BOXES scheme that selects one of the fuzzy controllers for each time step according to the content of box that is established through the critic of the control action by the fuzzy controllers. It is found that the control scheme is good at controlling the cartpole system so that the system is stabilized fast while the BOXES develops its ability to select proper fuzzy controller through experience.

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems (혼돈 비선형 시스템을 위한 안정된 퍼지 제어기의 설계)

  • 최종태;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.429-432
    • /
    • 1998
  • This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalitys(LMIs). The designed fuzzy controller is applied to Rossler system. The simulation results show the effectiveness of our controller.

  • PDF

Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors (영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기)

  • Jung, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Design of Adaptive Fuzzy Control for High Performance of PMSM Drive (PMSM 드라이브의 고성능 제어를 위한 적응 퍼지제어기의 설계)

  • 정동화;이홍균;이정철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • This paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of permanent magnet synchronous motor(PMSM) drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The validity of the proposed adaptive fuzzy controller is confirmed by performance results for PMSM drive system.

Simulation of Shape Control in Cold Rolling Using Fuzzy Control (퍼지제어를 이용한 냉연공정 형상제어 시뮬레이션)

  • 정종엽;임용택;진철제;이해영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.302-312
    • /
    • 1994
  • In this study, a fuzzy theory is introduced to control the cross-sectional strip shape in cold rolling. A fuzzy controller is developed based on the production data and the operational knowledge. The cold rolled products are characterized into several types based on their irregularities. For each type of irregular strip shape, fuzzy controller calculates the changes of bender forces of work and intermediate rolls using fuzzy control algorithm. To simulate the continuous shape control, fuzzy controller is linked with emulator which is developed using neural network. The developed fuzzy controller and emulator simulate the cold rolling process until the irregularities converge to the tolerable range to produce unifrom cross-sectional strip shape. The results from this simulation are reasonable for various irregular strip shapes.

Fuzzy Control of Nonlinear Systems with Singularity (특이성을 가진 비선형 시스템에 대한 퍼지 제어)

  • 임기성;정정주
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2863-2866
    • /
    • 2003
  • In nonlinear control fields, for irregular nonlinear systems, control form which consists of approximate tracking control law and exact tracking control law and which switches between two laws has been proposed recently. In this thesis, we design new switching control law which connect approximate linearization control law and exact linearization control law by fuzzy rules for irregular nonlinear system, ball and beam system. Fuzzy switching controller designed by fuzzy concept is proved that designed scheme overcomes singularities of irregular system, improves unstability problem of switching procedure, and has more efficient control value through simulation. Stability of fuzzy control system proved by Lyapunov's stability theorems.

  • PDF

Load effect improvement using fuzzy controller (퍼지제어기를 이용한 부하영향의 감소)

  • 김유경;최태호;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.156-161
    • /
    • 1991
  • It is difficult to realize precise control by a fuzzy control scheme alone because control signals are derived from fuzzy inferences. On the other hand, pole-placement control can offer a precise control to a known system. In this paper, a VSC(variable structure control)scheme is proposed, which is an attempt to take merits of pole-placement control and fuzzy control. On the vicinity of the reference point the pole-placement control scheme takes over the role of the fuzzy controller to improve the set point response.

  • PDF

Design of Fuzzy Logic Control System for Segway Type Mobile Robots

  • Kwak, Sangfeel;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Studies on the control of inverted pendulum type systems have been widely reported. This is because this type of system is a typical complex nonlinear system and may be a good model to verify the performance of a proposed control system. In this paper, we propose the design of two fuzzy logic control systems for the control of a Segway mobile robot which is an inverted pendulum type system. We first introduce a dynamic model of the Segway mobile robot and then analyze the system. We then propose the design of the fuzzy logic control system, which shows good performance for the control of any nonlinear system. In this paper, we here design two fuzzy logic control systems for the position and balance control of the Segway mobile robot. We demonstrate their usefulness through simulation examples. We also note the possibility of simplifying the design process and reducing the computational complexity. This possibility is the result of the skew symmetric property of the fuzzy rule tables of the system.

Fuzzy logic control of a planar parallel manipulator using multi learning algorithm (다중 학습 알고리듬을 이용한 평면형 병렬 매니퓰레이터의 Fuzzy 논리 제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.914-922
    • /
    • 1999
  • A study on the improvement of tracking performance of a 3 DOF planar parallel manipulator is performed. A class of adaptive tracking control sheme is designed using self tuning adaptive fuzzy logic control theory. This control sheme is composed of three classical PD controller and a multi learning type self tuning adaptive fuzzy logic controller set. PD controller is tuned roughly by manual setting a priori and fuzzy logic controller is tuned precisely by the gradient descent method for a global solution during run-time, so the proposed control scheme is tuned more rapidly and precisely than the single learning type self tuning adaptive fuzzy logic control sheme for a local solution. The control performance of the proposed algorithm is verified through experiments.

  • PDF