• Title/Summary/Keyword: Fuzzy Cluster Analysis

Search Result 66, Processing Time 0.028 seconds

A Simulation Study on The Behavior Analysis of The Degree of Membership in Fuzzy c-means Method

  • Okazaki, Takeo;Aibara, Ukyo;Setiyani, Lina
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.209-215
    • /
    • 2015
  • Fuzzy c-means method is typical soft clustering, and requires a degree of membership that indicates the degree of belonging to each cluster at the time of clustering. Parameter values greater than 1 and less than 2 have been used by convention. According to the proposed data-generation scheme and the simulation results, some behaviors in the degree of "fuzziness" was derived.

Dynamic Cloud Resource Reservation Model Based on Trust

  • Qiang, Jiao-Hong;Ning, Ding-Wan;Feng, Tian-Jun;Ping, Li-Wei
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.377-395
    • /
    • 2018
  • Aiming at the problem of service reliability in resource reservation in cloud computing environments, a model of dynamic cloud resource reservation based on trust is proposed. A domain-specific cloud management architecture is designed in which resources are divided into different management domains according to the types of service for easier management. A dynamic resource reservation mechanism (DRRM) is used to test users' reservation requests and reserve resources for users. According to user preference, several resources are chosen to be candidate resources by fuzzy cluster analysis. The fuzzy evaluation method and a two-way trust evaluation mechanism are adopted to improve the availability and credibility of the model. An analysis and simulation experiments show that this model can increase the flexibility of resource reservation and improve user satisfaction.

A Study on Data Clustering Method Using Local Probability (국부 확률을 이용한 데이터 분류에 관한 연구)

  • Son, Chang-Ho;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

Data Classification Using the Robbins-Monro Stochastic Approximation Algorithm (로빈스-몬로 확률 근사 알고리즘을 이용한 데이터 분류)

  • Lee, Jae-Kook;Ko, Chun-Taek;Choi, Won-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.624-627
    • /
    • 2005
  • This paper presents a new data classification method using the Robbins Monro stochastic approximation algorithm k-nearest neighbor and distribution analysis. To cluster the data set, we decide the centroid of the test data set using k-nearest neighbor algorithm and the local area of data set. To decide each class of the data, the Robbins Monro stochastic approximation algorithm is applied to the decided local area of the data set. To evaluate the performance, the proposed classification method is compared to the conventional fuzzy c-mean method and k-nn algorithm. The simulation results show that the proposed method is more accurate than fuzzy c-mean method, k-nn algorithm and discriminant analysis algorithm.

  • PDF

Study of Rainfall Quantile Estimation using Cluster Analysis and Regional Frequency Analysis (군집분석과 지역빈도해석을 이용한 확률강우량 추정에 대한 연구)

  • Jung, Young-Hun;Jeong, Chang-Sam;Nam, Woo-Sung;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.288-291
    • /
    • 2010
  • 본 연구에서는 한강유역 109개 지점의 강우관측소에서 관측된 지속기간별 연최대강우량을 산정하고 지역빈도해석을 적용하기 위하여 한강유역에 대하여 지역구분을 실시하였다. 지역구분은 군집분석 방법인 Ward 방법, 평균연결법, Fuzzy-c means 방법, Two-Step 방법을 적용하였으며 군집분석을 수행하기 위해서 한강유역의 지점별 기상학적 인자와 지형학적 인자를 이용하여 군집분석을 수행하였다. 그 중 Fuzzy-c means 방법을 이용한 지역구분이 적합한 것으로 나타났다. 또한 모든 지속기간에 대하여 적합성 척도를 산정한 결과 GLO 분포형이 적정분포형으로 나타났으며, 지역빈도해석 방법인 지수홍수법을 이용하여 산정한 확률강우량과 지점빈도해석으로 산정한 확률강우량과 비교하여 적용성을 판단하였다.

  • PDF

A Study on the Classification of Chinese Major Ports based on Competitiveness Level

  • Lee, Hong-Girl;Yeo, Ki-Tae;Ryu, Hyung-Geun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.315-320
    • /
    • 2003
  • Since the beginning of open-door policy, China has been making rapid annual growth with an average 10% economic development. And due to this rapid growth, cargo volumes via ports have been also rapidly increased, and accordingly, current China government has intensively invested in port development. Further, this development project is significantly big scale, compared with those project which Korea and Japan have. Thus, China is beginning to threaten Korean ports, especially Busan port which try to be a hub port in Northeast Asia. For this reason, it has been very important issue for Korea and Busan port to investigate or analyze Chinese ports based on empirical data. Especially, although various studies related to Shanghai and Hong Kong have been conducted, the competitiveness of overall Chinese major ports has been little studied. In this paper, we analyzed competitiveness level of eight Chinese ports with capabilities as container terminal, based on reliable sources. From data analysis, eight Chinese ports were classified into four groups according to competitiveness level. Rankings among four clusters based on competitiveness level are cluster(Hone Kong), cluster C(Shanghai), cluster A(Qingdao, Tianjin, and Yantian) and cluster D(Dalian, Shekou, and Xiamen).

Scalable Search based on Fuzzy Clustering for Interest-based P2P Networks

  • Mateo, Romeo Mark A.;Lee, Jae-Wan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.157-176
    • /
    • 2011
  • An interest-based P2P constructs the peer connections based on similarities for efficient search of resources. A clustering technique using peer similarities as data is an effective approach to group the most relevant peers. However, the separation of groups produced from clustering lowers the scalability of a P2P network. Moreover, the interest-based approach is only concerned with user-level grouping where topology-awareness on the physical network is not considered. This paper proposes an efficient scalable search for the interest-based P2P system. A scalable multi-ring (SMR) based on fuzzy clustering handles the grouping of relevant peers and the proposed scalable search utilizes the SMR for scalability of peer queries. In forming the multi-ring, a minimized route function is used to determine the shortest route to connect peers on the physical network. Performance evaluation showed that the SMR acquired an accurate peer grouping and improved the connectivity rate of the P2P network. Also, the proposed scalable search was efficient in finding more replicated files throughout the peer network compared to other traditional P2P approaches.

Cluster Analysis on the Management Performance of Major Shipping Companies in the World (세계 주요선사의 경영성과에 대한 군집분석)

  • Do, Thi Minh Hoang;Choi, Kyoung Hoon;Park, Gyei Kark
    • Journal of Korea Port Economic Association
    • /
    • v.33 no.4
    • /
    • pp.17-36
    • /
    • 2017
  • In the modern economic context, it is apparent that there is a strong focus on the importance of global shipping industry. Recently, the world economic crisis has negatively influenced the industry with regard to both supply and demand, which has seen almost no sign of recovery. The fact that the entire industry is operating with low efficiency and at a low profit state has made all stakeholders anxious. This research examines the financial performance of the world's major shipping lines in order to give maritime stakeholders a closer look into the industry behind the ranking. Besides, the research evaluates the competitiveness of shipping companies in terms of financial ability and suggestions for strategic actions to stakeholders are provided. For these purposes, Fuzzy-C Means is used to cluster the selected lines into different groups based on their financial indices, namely liquidity, asset management, debt management and profitability. Levene's tests which are then followed by ANOVA tests are also utilized to assess the robustness of the clustering outcomes. The results indicate that liquidity, solvency and profitability act as the main criteria in the classification problem.

An analysis of the Factors of Moving in and Activation Strategies for Incheon Cold-Chain Cluster using LNG cold energy (LNG 냉열을 활용한 인천항 냉동·냉장 클러스터 입주요인 분석 및 활성화 방안 연구)

  • Ahn, kil-Seob;Oh, Jae-Gyun;Yang, Tae-Hyeon;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.101-111
    • /
    • 2019
  • The construction of a "cold-chain cluster," which is a complex of cold-storage warehouses is emerging as an issue in the logistics industry. The Incheon Port Authority, in partnership with Korea Gas Corporation, is carrying out a project to build a cold-storage cluster using cold energy generated in the Songdo LNG receiving terminal. This study proposes a method of activating the cold-storage cluster using the CFPR methodology. An analysis of major factors showed that the most important factor was stability and profitability, which scored 0.281. For sub-factors, sustainable trade volume was the highest in importance, followed by rent level, the sustainability of LNG cold energy utilization technology, competition with general cold-storage warehouses, and exclusion of duplicate investments in facilities. For the future study, the evaluation of complex of cold-storage warehouses using major factors drawn out from this study is needed.

Visual and Quantitative Analysis of Different Tastes in liquids with Fuzzy C-means and Principal Component Analysis Using Electronic Tongue System

  • Kim, Joeng-Do;Kim, Dong-Jin;Byun, Hyung-Gi;Ham, Yu-Kyung;Jung, Woo-Suk;Choo, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.133-137
    • /
    • 2005
  • In this paper, we investigate visual and quantitative analysis of different tastes in the liquids using multi-array chemical sensor (MACS) based on the ion-selective electrodes (ISEs), which is so called the electronic tongue (E-Tongue) system. We apply the Fuzzy C-means (FCM) algorithm combined with Principal Component Analysis (PCA), which can be used to reduce multi-dimensional data to two- or three-dimensional data, to classify visually data patterns detected by E-Tongue system. The proposed technique can be determined the cluster centers and membership grade of patterns through the unsupervised way. The membership grade of an unknown pattern, which does not shown previously, can be visually and analytically determined. Throughout the experimental trails, the E-tongue system combined with the proposed algorithms is demonstrated robust performance for visual and quantitative analysis for different tastes in the liquids.

  • PDF